Metaheuristic Computation with MATLAB®

Chapman & Hall/CRC (Verlag)
  • 1. Auflage
  • |
  • erschienen am 14. September 2020
  • |
  • 280 Seiten
E-Book | ePUB ohne DRM | Systemvoraussetzungen
978-1-000-09653-8 (ISBN)

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies.

Book Features:

    • Provides a unified view of the most popular metaheuristic methods currently in use

    • Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems

    • Covers design aspects and implementation in MATLAB®

    • Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization

    The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.

    1. Auflage
    • Englisch
    • London
    • |
    • Großbritannien
    Taylor & Francis Ltd
    • Für höhere Schule und Studium
    100 schwarz-weiße Abbildungen, 3 schwarz-weiße Tabellen
    • 11,72 MB
    978-1-000-09653-8 (9781000096538)
    weitere Ausgaben werden ermittelt

    Erik Cuevas is a professor in the Department of Electronics at the University of Guadalajara, Mexico.

    Alma Rodríguez is a PhD candidate in electronics and computer science at the University of Guadalajara, Mexico.

    Preface. Acknowledgments. Authors. Chapter 1 Introduction and Main Concepts. Chapter 2 Genetic Algorithms (GA). Chapter 3 Evolutionary Strategies (ES). Chapter 4 Moth-Flame Optimization (MFO) Algorithm. Chapter 5 Differential Evolution (DE). Chapter 6 Particle Swarm Optimization (PSO) Algorithm. Chapter 7 Artificial Bee Colony (ABC) Algorithm. Chapter 8 Cuckoo Search (CS) Algorithm. Chapter 9 Metaheuristic Multimodal Optimization. Index.

    Dateiformat: ePUB
    Kopierschutz: ohne DRM (Digital Rights Management)


    Computer (Windows; MacOS X; Linux): Verwenden Sie eine Lese-Software, die das Dateiformat EPUB verarbeiten kann: z.B. Adobe Digital Editions oder FBReader - beide kostenlos (siehe E-Book Hilfe).

    Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

    E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

    Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "glatten" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

    Weitere Informationen finden Sie in unserer E-Book Hilfe.

    Download (sofort verfügbar)

    99,99 €
    inkl. 7% MwSt.
    Download / Einzel-Lizenz
    ePUB ohne DRM
    siehe Systemvoraussetzungen
    E-Book bestellen