Science of Armour Materials

Science of Armour Materials
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 21. September 2016
  • |
  • 754 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100711-2 (ISBN)
 

The Science of Armour Materials comprehensively covers the range of armor materials from steels and light alloys, through glasses and ceramics, to fibers, textiles, and protective apparel. The book also discusses aspects of analytical and numerical modeling, as well as laboratory-based high-strain rate testing and ballistic testing methodologies. Each chapter is written from an international perspective, including reviews of the current global literature, and incorporates case studies that focus upon real life applications, research outcomes, and lessons learned. The threat spectrum is restricted to small arms ammunition, high velocity fragments, and stab and spike attacks, as well as blast loadings.


  • Features input from an editor who is an expert in his field: Dr. Ian Crouch, the author of over 80 publications in his field, with three patents to his name
  • Provides systematic and comprehensive coverage of armor materials, modeling, and testing
  • Offers a cross-disciplinary approach that brings together expertise in materials science and defense engineering
  • Discusses aspects of analytical and numerical modeling, as well as laboratory-based high-strain rate testing and ballistic testing methodologies
  • Englisch
  • Cambridge
Elsevier Science
  • 31,36 MB
978-0-08-100711-2 (9780081007112)
0081007116 (0081007116)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Science of Armour Materials
  • Related titles
  • The Science of Armour Materials
  • Copyright
  • Contents
  • List of contributors
  • Introduction
  • Foreword
  • Preface
  • Forethought
  • 1 - Introduction to armour materials
  • 1.1 The operational environment
  • 1.2 The threat
  • 1.2.1 Small arms ammunition
  • 1.2.1.1 Handgun bullets
  • 1.2.1.2 Rifle bullets
  • High-velocity, lead-filled rounds
  • High-velocity, cored rounds
  • Armour-piercing rounds
  • 1.2.2 High-velocity fragmentation
  • 1.2.3 Stab and spike threats
  • 1.2.4 Blast events and blast loadings
  • 1.2.4.1 Air blast loading
  • 1.2.4.2 Underbelly blast loading
  • 1.2.4.3 Armour response
  • 1.3 Terminal ballistics, impact dynamics and armour physics
  • 1.4 Defeat mechanisms
  • 1.5 Penetration mechanics and failure modes
  • 1.5.1 Ductile hole formation
  • 1.5.2 Plugging
  • 1.5.3 Delamination
  • 1.5.4 Discing
  • 1.5.5 Conoidal fracture
  • 1.5.6 Comminution
  • 1.5.7 Radial cracking
  • 1.5.8 Circumferential cracking
  • 1.5.9 Spallation (including scabbing)
  • 1.5.10 Fragmentation
  • 1.6 Design of armour systems
  • 1.6.1 Design of simple, elemental systems
  • 1.6.2 Design of multilayered systems
  • 1.6.3 The design process, design drivers and the role of mathematical modelling
  • 1.6.4 Different armour systems for different applications
  • 1.7 Revision of essential materials science
  • 1.7.1 Metals
  • 1.7.2 Polymers
  • 1.7.3 Ceramics
  • 1.7.4 Fibres and textiles
  • 1.7.5 Structure-property-performance relationships
  • Acknowledgements
  • References
  • 2 - Armour steels
  • 2.1 Introduction
  • 2.1.1 Brief history: from 'Little Willie' to 'Bushmaster'
  • 2.1.2 Ferrous alloys generally (mild steels to cast irons)
  • 2.2 Beneficial properties of armour steels
  • 2.2.1 Microstructural aspects
  • 2.2.1.1 Grain size and shape
  • 2.2.1.2 Microsegregation of alloying elements
  • 2.2.1.3 Size and distribution of carbides
  • 2.2.1.4 Size and shape of manganese sulphide stringers
  • 2.2.1.5 Characteristics of martensite
  • 2.2.1.6 Retained austenite
  • 2.2.2 Hardness, strength and toughness
  • 2.2.3 High strain rate effects
  • 2.2.4 Fabricability
  • 2.2.4.1 Effects of hot- and cold-rolling
  • 2.2.4.2 Effects of welding
  • 2.2.4.3 Effects of cutting
  • 2.2.5 Cost and availability
  • 2.3 Failure mechanisms and modes
  • 2.3.1 Adiabatic shear
  • 2.3.2 Brittle failure
  • 2.3.3 Structural engineering failures
  • 2.3.3.1 Cracking associated with welding
  • 2.3.3.2 Fatigue cracking
  • 2.3.3.3 Stress corrosion cracking
  • 2.3.3.4 Delayed cracking
  • 2.4 Grades of armour steels
  • 2.4.1 Wrought homogeneous armours
  • 2.4.2 Cast steel armours
  • 2.4.3 Dual-hardness grades
  • 2.4.4 Electroslag refining (ESR) grades
  • 2.4.5 Research grades
  • 2.4.5.1 Super bainitic steels
  • 2.4.5.2 Flash bainitic steels
  • 2.4.5.3 Twinning-induced plasticity steels
  • 2.4.5.4 Transformation-induced plasticity steels
  • 2.4.5.5 High-alloy, high-carbon steels
  • 2.5 Armour specifications and standards
  • 2.5.1 Wrought armour steels
  • 2.5.2 Cast steel armours
  • 2.5.3 Perforated steel armours
  • Acknowledgements
  • References
  • 3 - Light alloys
  • 3.1 General introduction
  • 3.1.1 Brief history of the light alloys
  • 3.1.2 Ballistic properties and specific failure modes
  • 3.2 Aluminium alloys
  • 3.2.1 Work-hardening grades
  • 3.2.2 Age-hardening grades
  • 3.2.3 Ballistic properties of different grades
  • 3.2.4 Engineering issues
  • 3.2.4.1 Stress corrosion cracking
  • 3.2.4.2 Palliative treatments for SCC
  • 3.2.4.3 Weldability
  • 3.3 Titanium alloys
  • 3.3.1 Ti-6Al-4V grades
  • 3.3.2 Future titanium alloy armours
  • 3.4 Magnesium alloys
  • 3.4.1 Mg-3Al-1Zn alloys
  • 3.4.2 Research grades
  • 3.4.2.1 Alloys with rare earth additions
  • 3.4.2.2 Alloys with Al and Ca additions
  • 3.4.3 Future alloy developments
  • 3.5 Light alloy specifications and standards
  • 3.5.1 Aluminium alloys
  • 3.5.2 Titanium alloys
  • 3.5.3 Magnesium alloys
  • Acknowledgements
  • References
  • 4 - Laminated materials and layered structures
  • 4.1 General introduction
  • 4.1.1 Categories of laminated materials and layered structures
  • 4.1.2 Design approaches, added value and creative thinking
  • 4.2 Principles of laminates
  • 4.2.1 Layers and interfaces
  • 4.2.2 Characteristics of interlayers
  • 4.2.3 Surface effects and coatings
  • 4.2.4 Disrupter-absorber principles
  • 4.2.5 The air gap
  • 4.3 Objectives in designing laminated armours
  • 4.3.1 Managing stress waves
  • 4.3.2 Preventing plugging
  • 4.3.3 Preventing discing
  • 4.3.4 Providing support for a brittle material
  • 4.4 Research into laminated armours
  • 4.4.1 Laminated steels
  • 4.4.2 Laminated light alloys
  • 4.4.3 Hybrid laminates
  • 4.5 Examples of laminated armours
  • 4.5.1 Adhesively bonded aluminium laminates
  • 4.5.2 NewSentry armour
  • a steel-composite laminate
  • 4.5.3 An alumina-aluminium laminated armour
  • 4.6 Conclusion
  • References
  • 5 - Polymers and fibre-reinforced plastics
  • 5.1 General introduction
  • 5.1.1 Brief history: from spall liners to structural fibre-reinforced plastics (FRPs)
  • 5.1.2 Energy-absorbing mechanisms and failure modes
  • 5.2 Polymers and resins
  • 5.2.1 Unreinforced polymers
  • 5.2.2 Thermosetting resins
  • 5.3 Reinforcing fibres for hard armour
  • 5.3.1 Glass fibres
  • 5.3.2 Carbon fibres
  • 5.3.3 Aramid fibres
  • 5.3.4 Polyethylene fibres
  • 5.4 Woven fabrics for hard armours
  • 5.4.1 Fabric style
  • 5.4.2 Three-dimensional fabrics
  • 5.4.3 Hybrid fabrics
  • 5.5 Processing routes: general introduction
  • 5.5.1 Platen pressing
  • 5.5.2 High-pressure (HP) compression moulding
  • 5.5.3 Resin transfer moulding
  • 5.5.4 Vacuum-assisted resin infusion (VARI) processes
  • 5.5.4.1 Case study: application of VARI in a composite armour system for the RAN
  • 5.5.5 Diaphragm forming
  • 5.5.6 Double diaphragm forming
  • 5.5.6.1 Influence of fabric tow width and weave geometry on drapeability
  • 5.5.6.2 Inter- and intra-laminate frictional constraints
  • 5.5.6.3 Locking angle and the trellis effect
  • 5.5.7 Double diaphragm deep drawing (D4) process
  • 5.6 Armour products for personal protection
  • 5.6.1 Thermoformed shields and visors
  • 5.6.2 Hard armour plates (HAPs)
  • 5.6.3 Combat helmets
  • 5.6.3.1 History and evolution of combat helmets
  • 5.6.3.2 Design considerations
  • Structural requirements
  • Ballistic requirements
  • 5.7 Specifications and ballistic standards
  • 5.7.1 Eyewear
  • 5.7.2 Spall liners
  • References
  • 6 - Fibres, textiles and protective apparel
  • 6.1 General introduction to protective apparel
  • 6.1.1 Personal body armour
  • 6.1.2 Energy-absorbing mechanisms and failure modes
  • 6.2 Technical fibres for ballistic fabrics
  • 6.2.1 Brief history, from Kwolek to carbon nanotubes
  • 6.2.2 Structure and properties of fibres
  • 6.2.3 Silk fibres
  • 6.2.4 Polyamide (nylon) fibres
  • 6.2.5 Poly(p-phenylene terephthalamide) (PPTA) fibres
  • 6.2.6 Polyethylene (UHMWPE) fibres
  • 6.2.7 Research grade fibres
  • 6.2.7.1 Polybenzazole fibres (PBO, PBT)
  • 6.2.7.2 Poly{diimidazo pyridinylene (dihydroxy) phenylene}
  • PIPD
  • 6.3 Technical textiles and ballistic fabrics
  • 6.3.1 Woven fabrics
  • 6.3.2 Nonwoven and noncrimp fabrics
  • 6.3.3 Coated fabrics
  • 6.3.4 Knitted fabrics
  • 6.3.5 Felts
  • 6.3.6 Fabrics coated with shear thickening fluid
  • 6.4 Layered fabric structures
  • 6.4.1 Stitched structures
  • 6.4.2 Quilted structures
  • 6.4.3 Hybrid structures
  • 6.4.4 Three-dimensional structures
  • 6.5 Soft armour inserts
  • 6.5.1 Introduction and general approach
  • 6.5.2 General properties: edge effects
  • multistrike effects
  • 6.5.3 Soft armour inserts for handgun protection
  • 6.5.4 Soft armour inserts for stab and spike resistance
  • 6.5.4.1 Very fine-woven fabrics
  • 6.5.4.2 Laminated fabrics
  • 6.5.4.3 Chain mail
  • 6.5.4.4 Turtleskin, a proprietary product
  • 6.6 Protective garments/apparel
  • 6.6.1 Typical body armour systems
  • 6.6.2 Trade-offs: weight versus mobility versus protection
  • Acknowledgements
  • References
  • 7 - Glasses and ceramics
  • 7.1 General introduction
  • 7.1.1 Key properties and drivers
  • 7.1.2 Energy-absorbing mechanisms and failure modes
  • 7.2 Conventional glasses
  • 7.3 Glass ceramics
  • 7.4 Transparent crystalline ceramics
  • 7.4.1 Microstructural and processing aspects
  • 7.4.1.1 Crystal structure
  • 7.4.1.2 Impurities
  • 7.4.1.3 Porosity
  • 7.4.1.4 Grain size control
  • 7.4.1.5 Processing and sintering
  • 7.4.1.6 Surface finishing
  • 7.4.1.7 Thickness
  • 7.4.2 Aluminium oxynitride
  • 7.4.3 Magnesium aluminate spinel
  • 7.4.4 Single-crystal aluminium oxide (sapphire)
  • 7.4.5 Comparative ballistic properties
  • 7.5 Monolithic ceramics
  • 7.5.1 Aluminium oxides
  • 7.5.2 Silicon carbides
  • 7.5.3 Boron carbides
  • 7.6 Manufacturing options and shaping methods
  • 7.6.1 Shaping
  • 7.6.1.1 Dry pressing
  • 7.6.1.2 Wet powder processing
  • 7.6.1.3 Slip casting
  • 7.6.1.4 Reaction bonding or reaction sintering
  • 7.6.1.5 Viscous plastic processing
  • 7.6.1.6 Gelcasting and related techniques
  • 7.6.2 Densification
  • 7.6.2.1 Pressureless sintering
  • 7.6.2.2 Hot pressing
  • 7.6.2.3 Hot isostatic pressing
  • 7.6.2.4 Spark plasma sintering
  • 7.7 Polymer ceramics
  • 7.7.1 Compositional effects and ballistic performance
  • 7.8 Application of transparent armours to vehicle platforms
  • 7.9 Application of opaque ceramics to vehicle platforms
  • 7.9.1 System variables
  • 7.9.2 Material variables
  • 7.10 Application of opaque ceramics to body armour systems
  • 7.10.1 Historical background
  • 7.10.2 Design principles
  • 7.10.3 Choice of materials
  • 7.10.3.1 Strike face material
  • 7.10.3.2 Backing material
  • 7.10.3.3 Substrate support
  • 7.10.3.4 Other elements
  • 7.10.4 Method of construction
  • 7.10.5 Ballistic performance
  • 7.10.5.1 V-50 determinations
  • 7.10.5.2 Edge performance
  • 7.10.6 Cost
  • References
  • 8 - Analytical techniques and mathematical modelling
  • 8.1 Introduction
  • 8.2 Analytical modelling of penetration into semi-infinite metallic targets
  • 8.2.1 Hydrodynamic jet penetration
  • 8.2.2 Four-phase penetration model
  • 8.2.3 Empirical cratering relationships
  • 8.2.4 Modified hydrodynamic theory
  • Outline placeholder
  • Case 1 (Rt Yp)
  • Case 2 (Rt
  • Case 3 (Rt=Yp)
  • 8.2.5 Centreline momentum balance
  • 8.2.6 One-dimensional finite difference discretisation
  • 8.3 Analytical modelling of the perforation of finite metallic armour targets
  • 8.3.1 Cavity expansion theory
  • 8.3.2 Plasticity theory
  • 8.3.3 Ravid-Bodner multistage model
  • 8.3.4 Breakout (Walker-Anderson)
  • 8.3.5 Penetration/perforation of laminated materials/targets
  • 8.3.5.1 Case study 1: predicting the performance of an Al alloy against armour piercing projectiles
  • 8.4 Analytical modelling for penetration/perforation of nonmetallic armour
  • 8.4.1 Penetration/perforation of fabric armour
  • 8.4.2 Penetration/perforation of composite armour
  • 8.4.3 Penetration/perforation of ceramic armour
  • 8.4.4 Predicting collateral damage in ceramic targets
  • 8.4.4.1 Case study 2: predicting the performance of composite armour against fragments
  • 8.5 Computational packages for the perforation of finite-thickness armour targets
  • 8.5.1 THOR
  • 8.5.2 JTCG/ME penetration handbook
  • 8.5.3 ConWep
  • 8.5.4 FATEPEN
  • 8.5.5 Future techniques
  • 8.5.6 Case study 3: predicting the performance of a range of steel grades against fragments and armour-piercing projectiles
  • Acknowledgements
  • References
  • 9 - Numerical modelling and computer simulations
  • 9.1 Introduction to numerical modelling
  • 9.2 A short review of software packages
  • 9.3 An overview of the various solvers
  • 9.3.1 Lagrangian methods
  • 9.3.2 Eulerian and arbitrary Lagrangian Eulerian (ALE) methods
  • 9.3.3 Mesh-free methods: smooth particle hydrodynamics
  • 9.4 Equations of state
  • 9.4.1 Mie-Grueneisen EOS
  • 9.4.2 SESAME EOS
  • 9.5 Strength models and failure criteria for metals
  • 9.5.1 Johnson-Cook strength model
  • 9.5.1.1 Limitations of the Johnson-Cook strength model
  • 9.5.2 Johnson-Cook damage criteria
  • 9.5.3 Cockcroft-Latham damage criteria
  • 9.5.4 Zerilli-Armstrong (Z-A) strength model
  • 9.5.5 Mechanical threshold stress (MTS) strength model
  • 9.5.6 Steinberg-Cochran-Guinan-Lund (SCGL) strength model
  • 9.6 Strength models for nonmetals
  • 9.6.1 Johnson-Holmquist ceramics model
  • 9.6.2 Kayenta ceramic model
  • 9.6.3 Strength models for polymeric materials
  • 9.6.4 Strength models for rubbers and elastomers
  • 9.6.5 Constitutive equations for textiles and fibre-reinforced polymers
  • 9.6.6 Modelling metallic laminates
  • 9.6.7 Modelling cellular materials
  • 9.6.7.1 Continuum models for cellular materials
  • 9.6.7.2 Micromechanical models for cellular materials
  • 9.7 Threat definitions
  • 9.7.1 Modelling KE impactors
  • 9.7.2 Modelling high-explosive (HE) events
  • 9.7.2.1 Worked Example #1: modelling of multilayered armour (Lagrangian)
  • 9.7.2.2 Worked Example #2: failure of unconfined and confined SiC impacted by 7.62mm APM2
  • 9.7.2.3 Worked Example #3: soft fabric armour
  • 9.7.2.4 Worked Example #4: modelling of metallic appliqué armour (Lagrangian and SPH)
  • Acknowledgements
  • References
  • 9. Appendices
  • Appendix 9A
  • Nomenclature applies to J-C, Z-A and Cockcroft-Latham models
  • Appendix 9B
  • 10 - High strain rate and specialised testing
  • 10.1 General introduction
  • 10.1.1 Specialised quasistatic (QS) testing
  • 10.1.2 High strain rate testing
  • 10.2 Specialised testing techniques
  • 10.2.1 Indentation tests
  • 10.2.2 Through-thickness compression tests
  • 10.2.3 Delamination tests
  • 10.3 Impact tests
  • 10.3.1 Drop-weight tests
  • 10.3.2 Taylor impact test
  • 10.3.3 Gas gun impact experiments
  • 10.4 Dynamic fracture tests
  • 10.4.1 Charpy and Izod impact tests
  • 10.4.2 Fragmentation tests
  • 10.4.3 Spallation tests
  • 10.4.4 Explosion bulge test
  • 10.4.5 Blast tests of panels (flat and curved) and tubes
  • 10.5 Plate impact tests
  • 10.5.1 EOS measurements
  • 10.5.2 HEL measurements
  • 10.6 Split Hopkinson pressure bar tests
  • 10.6.1 SHPB for dynamic tensile experiments
  • 10.6.2 SHPB for dynamic torsion experiments
  • 10.6.3 SHPB for dynamic shear experiments
  • 10.6.4 SHPB for dynamic triaxial experiments
  • 10.6.5 SHPB for dynamic fracture experiments
  • 10.7 Application of SHPB data
  • 10.7.1 General implementation
  • 10.7.2 Armour steels
  • 10.7.3 Metallic honeycombs and foams
  • 10.7.4 Wool and aramid fibres
  • 10.7.5 Fibre-reinforced polymer composites
  • References
  • 11 - Ballistic testing methodologies
  • 11.1 General introduction
  • 11.1.1 The testing environment
  • 11.1.2 Test procedures and terminologies
  • 11.1.3 Definitions of 'failure'
  • 11.2 Experimental techniques used during armour development
  • 11.2.1 For evaluating armour systems
  • 11.2.1.1 Through V-50, o and BFS measurements
  • 11.2.1.2 Through residual velocity curves
  • 11.2.2 For evaluating armour materials
  • 11.2.2.1 Through a study of 'single strikes'
  • 11.2.2.2 Through estimated V-50 tests
  • 11.2.2.3 Through depth of penetration (DOP) tests
  • 11.2.2.4 Through residual depth of penetration tests
  • 11.2.2.5 Through spall tests
  • 11.2.3 For studying defeat mechanisms
  • 11.2.3.1 Through forensic examination of the impact site
  • 11.2.3.2 Through stand-off RDOP tests
  • 11.2.3.3 Through reverse ballistics tests
  • 11.2.4 Experimental diagnostic tools
  • 11.2.4.1 High-speed digital video
  • 11.2.4.2 Flash x-radiography
  • 11.2.4.3 High-resolution digital x-radiography [two-dimensional (2D)]
  • 11.2.4.4 High-resolution digital x-radiography (3D)
  • 11.3 Standard techniques (for proving armour systems)
  • 11.3.1 Body armour systems
  • 11.3.2 Combat helmets
  • 11.3.3 Stab and spike vests
  • 11.3.4 Bullet-resistant glass and transparent armours
  • 11.4 Check-production techniques
  • 11.5 Preconditioning tests
  • Acknowledgements
  • References
  • 12 - The future of armour materials
  • 12.1 General reflections
  • 12.2 Trends in the threat spectra
  • 12.3 Trends in armour materials
  • 12.3.1 Steels
  • 12.3.2 Light alloys
  • 12.3.3 Fibres and fibre-reinforced plastics
  • 12.3.4 Textiles
  • 12.3.5 Glasses and ceramics
  • 12.3.6 Microtruss materials
  • 12.4 Trends in armour systems
  • 12.4.1 Body armour systems
  • 12.4.2 Vehicle armours
  • 12.5 Final thoughts and suggestions
  • 12.6 Final words
  • Acknowledgements
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok