Abbildung von: Docker for Data Science - Apress

Docker for Data Science

Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Joshua Cook(Autor*in)
Erschienen am 23. August 2017
XXI, 257 Seiten
PDF mit Wasserzeichen-DRM
978-1-4842-3012-1 (ISBN)
62,99 €inkl. 7% MwSt.
für PDF mit Wasserzeichen-DRM
E-Book Einzellizenz
Als Download verfügbar
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.
It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable.

As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies-Python, Jupyter, Postgres-as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.
What You'll Learn
  • Master interactive development using the Jupyter platform
  • Run and build Docker containers from scratch and from publicly available open-source images
  • Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type
  • Deploy a multi-service data science application across a cloud-based system

Who This Book Is For
Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
1st ed.
76 farbige Abbildungen, 21 s/w Abbildungen
XXI, 257 p. 97 illus., 76 illus. in color.
7,16 MB
978-1-4842-3012-1 (9781484230121)
Schweitzer Klassifikation
Thema Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BIC 2 Klassifikation
BISAC Klassifikation
Warengruppensystematik 2.0
Joshua Cook is a mathematician. He writes code in Bash, C, and Python and has done pure and applied computational work in geo-spatial predictive modeling, quantum mechanics, semantic search, and artificial intelligence. He also has 10 years experience teaching mathematics at the secondary and post-secondary level. His research interests lie in high-performance computing, interactive computing, feature extraction, and reinforcement learning. He is always willing to discuss orthogonality or to explain why Fortran is the language of the future over a warm or cold beverage.
1. Introduction
2. Docker3. Jupyter4. Docker Client5. The Dockerfile6. Docker Hub7. The Opinionated Jupyter Stacks8. The Data Stores9. Docker Compose10. Interactive Development

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)


  • Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer  E-Book Hilfe.