Petroleum Refining Design and Applications Handbook

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 31. Juli 2018
  • |
  • 654 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-25709-7 (ISBN)
 

There is a renaissance that is occurring in chemical and process engineering, and it is crucial for today's scientists, engineers, technicians, and operators to stay current. With so many changes over the last few decades in equipment and processes, petroleum refining is almost a living document, constantly needing updating. With no new refineries being built, companies are spending their capital re-tooling and adding on to existing plants. Refineries are like small cities, today, as they grow bigger and bigger and more and more complex. A huge percentage of a refinery can be changed, literally, from year to year, to account for the type of crude being refined or to integrate new equipment or processes.

This book is the most up-to-date and comprehensive coverage of the most significant and recent changes to petroleum refining, presenting the state-of-the-art to the engineer, scientist, or student. Useful as a textbook, this is also an excellent, handy go-to reference for the veteran engineer, a volume no chemical or process engineering library should be without. Written by one of the world's foremost authorities, this book sets the standard for the industry and is an integral part of the petroleum refining renaissance. It is truly a must-have for any practicing engineer or student in this area.



Kayode Coker PhD, is Engineering Consultant for AKC Technology, an Honorary Research Fellow at the University of Wolverhampton, U.K., a former Engineering Coordinator at Saudi Aramco Shell Refinery Company and Chairman of the department of Chemical Engineering Technology at Jubail Industrial College, Saudi Arabia. He has been a chartered chemical engineer for more than 30 years. He is a Fellow of the Institution of Chemical Engineers, U.K. and a senior member of the American Institute of Chemical Engineers. He holds a B.Sc. honors degree in Chemical Engineering, a Master of Science degree in Process Analysis and Development and Ph.D. in Chemical Engineering, all from Aston University, Birmingham, U.K. and a Teacher's Certificate in Education at the University of London, U.K. He has directed and conducted short courses extensively throughout the world and has been a lecturer at the university level. His articles have been published in several international journals. He is an author of five books in chemical engineering, a contributor to the Encyclopedia of Chemical Processing and Design. Vol 61. He was named as one of the International Biographical Centre's Leading Engineers of the World for 2008. Also, he is a member of International Who's Who of ProfessionalsTM and Madison Who's Who in the U.S.

1. Auflage
  • Englisch
  • Somerset
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 25,88 MB
978-1-119-25709-7 (9781119257097)
weitere Ausgaben werden ermittelt
Kayode Coker PhD, is Engineering Consultant for AKC Technology, an Honorary Research Fellow at the University of Wolverhampton, U.K., a former Engineering Coordinator at Saudi Aramco Shell Refinery Company and Chairman of the department of Chemical Engineering Technology at Jubail Industrial College, Saudi Arabia. He has been a chartered chemical engineer for more than 30 years. He is a Fellow of the Institution of Chemical Engineers, U.K. and a senior member of the American Institute of Chemical Engineers. He holds a B.Sc. honors degree in Chemical Engineering, a Master of Science degree in Process Analysis and Development and Ph.D. in Chemical Engineering, all from Aston University, Birmingham, U.K. and a Teacher's Certificate in Education at the University of London, U.K. He has directed and conducted short courses extensively throughout the world and has been a lecturer at the university level. His articles have been published in several international journals. He is an author of five books in chemical engineering, a contributor to the Encyclopedia of Chemical Processing and Design. Vol 61. He was named as one of the International Biographical Centre's Leading Engineers of the World for 2008. Also, he is a member of International Who's Who of ProfessionalsTM and Madison Who's Who in the U.S.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • About the Author
  • 1 Introduction
  • References
  • 2 Composition of Crude Oils and Petroleum Products
  • 2.1 Hydrocarbons
  • 2.1.1 Alkynes Series
  • 2.2 Aromatic Hydrocarbons
  • 2.3 Heteroatomic Organic Compounds
  • 2.3.1 Non-Hydrocarbons
  • 2.3.2 Sulfur Compounds
  • 2.4 Thiols
  • 2.5 Oxygen Compounds
  • 2.6 Nitrogen Compounds
  • 2.7 Resins and Asphaltenes
  • 2.8 Salts
  • 2.9 Carbon Dioxide
  • 2.10 Metallic Compounds
  • 2.11 Products Composition
  • 2.11.1 Liquefied Petroleum Gas (LPG) (C3 and C4)
  • 2.11.2 Gasoline (C5 to C11)
  • 2.11.3 Condensate (C4, C5 and C6 >)
  • 2.11.4 Gas Fuel Oils (C12 to C19)
  • 2.11.5 Kerosene
  • 2.11.6 Diesel Fuel
  • 2.11.7 Fuel Oils # 4, 5, and 6
  • 2.11.8 Residual Fuel Oil
  • 2.11.9 Natural Gas
  • References
  • 3 Characterization of Petroleum and Petroleum Fractions
  • 3.1 Introduction
  • 3.1.1 Crude Oil Properties
  • 3.1.2 Gravity, API
  • 3.1.3 Boiling Point Range
  • 3.1.4 Characterization Factor
  • 3.1.5 The Universal Oil Product Characterization factor, KUOP
  • 3.1.6 Carbon Residue, wt%
  • 3.1.7 Nitrogen Content, wt%
  • 3.1.8 Sulfur Content, wt%
  • 3.1.9 Total Acid Number (TAN)
  • 3.1.10 Salt Content, pounds/1000 barrels
  • 3.1.11 Metals, parts/million (ppm) by weight
  • 3.1.12 Pour Point (°F or °C)
  • 3.2 Crude Oil Assay Data
  • 3.2.1 Whole crude oil average properties
  • 3.2.2 Fractional properties
  • 3.3 Crude Cutting Analysis
  • 3.4 Crude Oil Blending
  • 3.5 Laboratory Testing of Crude Oils
  • 3.5.1 True Boiling Point (TBP) Curve
  • 3.5.2 ASTM D86 Distillation
  • 3.5.3 Boiling Points
  • 3.5.4 Conversion Between ASTM and TBP Distillation
  • 3.5.5 Petroleum Pseudo-Components
  • 3.5.6 Pseudo-Component Normal Boiling Points
  • 3.5.7 ASTM D1160 Distillation
  • 3.5.8 Determination of ASTM IBP, 10%, 20-90% Points of Blend
  • 3.5.9 ASTM 10-90% Points
  • 3.5.10 Initial Boiling Point Determination
  • 3.5.11 ASTM End Point of Blend
  • 3.5.12 Flash Point
  • 3.5.13 Flash Point, °F, as a Function of Average Boiling Point
  • 3.5.14 Smoke Point of Kerosenes
  • 3.5.15 Luminometer Number
  • 3.5.16 Reid Vapor Pressure (RVP)
  • 3.5.17 Vapor Pressure of Narrow Hydrocarbon Cuts
  • 3.6 Octanes
  • 3.7 Cetanes
  • 3.7.1 Cetane Index
  • 3.8 Diesel Index
  • 3.9 Determination of the Lower Heating Value of Petroleum Fractions
  • 3.10 Aniline Point Blending
  • 3.11 Correlation Index (CI)
  • 3.12 Chromatographically Simulated Distillations
  • References
  • 4 Thermodynamic Properties of Petroleum and Petroleum Fractions
  • 4.1 K-Factor Hydrocarbon Equilibrium Charts
  • 4.2 Non-Ideal Systems
  • 4.3 Vapor Pressure
  • 4.3.1 Vapor Pressure Determination using the Clausius-Clapeyron and the Antoine Equations
  • 4.4 Viscosity
  • 4.4.1 Conversion to Saybolt Universal Viscosity
  • 4.4.2 Conversion to Saybolt Furol Viscosity
  • 4.4.3 Equivalents of Kinematic (cSt), Saybolt Universal (SUS), and Dynamic viscosity
  • 4.4.4 Viscosity of Liquid Hydrocarbons
  • 4.4.5 Gas Viscosity
  • 4.5 Refractive Index
  • 4.6 Liquid Density
  • 4.6.1 Gas Density
  • 4.7 Molecular Weight
  • 4.8 Molecular Type Composition
  • 4.9 Critical Temperature, Tc
  • 4.10 Critical Pressure, Pc
  • 4.11 Pseudo-Critical Constants and Acentric Factors
  • 4.12 Enthalpy of Petroleum Fractions
  • 4.13 Compressibility Z Factor of Natural Gases
  • 4.14 Simulation Thermodynamic Software Programs
  • References
  • 5 Process Descriptions of Refinery Processes
  • 5.1 Introduction
  • 5.2 Refinery and Distillation Processes
  • 5.3 Process Description of the Crude Distillation Unit
  • 5.3.1 Crude Oil Desalting
  • 5.3.2 Types of Salts in Crude Oil
  • 5.3.3 Desalting Process
  • 5.3.4 Pumparound Heat Removal
  • 5.3.5 Tower Pressure Drop and Flooding
  • 5.3.6 Carbon Steel Trays
  • 5.3.7 Rectifying Section of the Main Column
  • 5.3.8 Side Stripping Columns
  • 5.3.9 Crude Column Overhead
  • 5.3.10 General Properties of Petroleum Fractions
  • 5.4 Process Variables in the Design of Crude Distillation Column
  • 5.4.1 Process Design of a Crude Distillation Column
  • 5.5 Process Simulation
  • 5.5.1 Overall Check of Simulation
  • 5.5.2 Other Aspects of Design
  • 5.5.3 Relationship between Actual Trays and Theoretical Trays
  • 5.6 Process Description of Light Arabian Crude Using UniSim® Simulation Software [12]
  • 5.6.1 Column Conventions
  • 5.6.2 Performance Specifications Definition
  • 5.6.3 Cut Points
  • 5.6.4 Degree of Separation
  • 5.6.5 Overflash
  • 5.6.6 Column Pressure
  • 5.6.7 Overhead Temperature
  • 5.6.8 Bottom Stripping
  • 5.6.9 Side Stream Stripper
  • 5.6.10 Reflux
  • 5.7 Troubleshooting Actual Columns
  • 5.8 Health, Safety and Environment Considerations
  • References
  • 6 Thermal Cracking Processes
  • 6.1 Process Description
  • 6.2 Steam Jet Ejector
  • 6.3 Pressure Survey in a Vacuum Column
  • 6.4 Simulation of Vacuum Distillation Unit
  • 6.5 Coking
  • 6.5.1 Delayed Coking
  • 6.5.2 Delayed Coker Yield Prediction
  • 6.5.3 Coke Formation
  • 6.5.4 Thermodynamics of Coking of Light Hydrocarbons
  • 6.5.5 Gas Composition
  • 6.6 Fluid Coking
  • 6.6.1 Flexi-Coking
  • 6.6.2 Contact Coking
  • 6.6.3 Coke Drums
  • 6.6.4 Heavy Coker Gas Oil (HCGO) Production
  • 6.6.5 Light Coker Gas Oil (LCGO) Production
  • 6.7 Fractionator Overhead System
  • 6.8 Coke Drum Operations
  • 6.9 Hydraulic Jet Decoking
  • 6.10 Uses of Petroleum Coke
  • 6.11 Use of Gasification
  • 6.12 Sponge Coke
  • 6.13 Safety and Environmental Considerations
  • 6.14 Simulation/Calculations
  • 6.15 Visbreaking
  • 6.15.1 Visbreaking Reactions
  • 6.15.2 Visbreaking Severity
  • 6.15.3 Operation and Control
  • 6.15.4 Typical Visbreaker Unit
  • 6.15.5 Typical Visbreaker Unit with Vacuum Flasher
  • 6.15.6 Typical Combination Visbreaker and Thermal Cracker
  • 6.15.7 Product Yield
  • 6.16 Process Simulation
  • 6.17 Health, Safety and Environment Considerations
  • References
  • 7 Hydroprocessing
  • 7.1 Catalytic Conversion Processes
  • 7.1.1 Hydrocracking Chemistry
  • 7.1.2 Hydrocracking Reactions
  • 7.1.3 Typical Hydrocracking Reactions
  • 7.2 Feed Specifications
  • 7.2.1 Space Velocity
  • 7.2.2 Reactor Temperature
  • 7.2.3 Reactor Pressure
  • 7.2.4 Hydrogen Recycle Rate
  • 7.2.5 Oil Recycle Ratio
  • 7.2.6 Heavy Polynuclear Aromatics
  • 7.3 Feed Boiling Range
  • 7.4 Catalyst
  • 7.4.1 Catalyst Performance
  • 7.4.2 Loss of Catalyst Performance
  • 7.4.3 Poisoning by Impurities in Feeds or Catalysts
  • 7.4.4 The Apparent Catalyst Activity
  • 7.5 Poor Gas Distribution
  • 7.6 Poor Mixing of Reactants
  • 7.7 The Mechanism of Hydrocracking
  • 7.8 Thermodynamics and Kinetics of Hydrocracking
  • 7.9 Process Design, Rating and Performance
  • 7.9.1 Operating Temperature and Pressure
  • 7.9.2 Optimum Catalyst Size and Shape
  • 7.9.3 Pressure Drop (?P) in Tubular/Fixed-Bed Reactors
  • 7.9.4 Catalyst Particle Size
  • 7.9.5 Vessel Dimensions
  • 7.10 Increased ?P
  • 7.11 Factors Affecting Reaction Rate
  • 7.12 Measurement of Performance
  • 7.13 Catalyst-Bed Temperature Profiles
  • 7.14 Factors Affecting Hydrocracking Process Operation
  • 7.15 Hydrocracking Correlations
  • 7.15.1 Maximum Aviation Turbine Kerosene (ATK) Correlations
  • 7.15.2 Process Description
  • 7.15.3 Fresh Feed and Recycle Liquid System
  • 7.15.4 Liquid and Vapor Separators
  • 7.15.5 Recycle Gas Compression and Distribution
  • 7.15.6 Hydrogen Distribution
  • 7.15.7 Control of the Hydrogen System
  • 7.15.8 Reactor Design
  • 7.16 Hydrocracker Fractionating Unit
  • 7.16.1 Mild Vacuum Column
  • 7.16.2 Steam Generation
  • 7.17 Operating Variables
  • 7.18 Hydrotreating Process
  • 7.18.1 Process Description
  • 7.18.2 Process Variables
  • 7.18.3 Hydrotreating Catalysts
  • 7.19 Thermodynamics of Hydrotreating
  • 7.20 Reaction Kinetics
  • 7.21 Naphtha Hydrotreating
  • 7.21.1 Hydrotreating Correlations
  • 7.21.2 Middle Distillates Hydrotreating
  • 7.21.3 Middle Distillate Hydrotreating Correlations
  • 7.22 Atmospheric Residue Desulfurization
  • 7.22.1 High-Pressure Separator
  • 7.22.2 Low-Pressure Separator
  • 7.22.3 Hydrogen Sulfide Removal
  • 7.22.4 Recycled Gas Compressor
  • 7.22.5 Process Water
  • 7.22.6 Fractionation Column
  • 7.22.7 Operating Conditions of Hydrotreating Processes
  • 7.23 Health, Safety and Environment Considerations
  • References
  • 8 Catalytic Cracking
  • 8.1 Introduction
  • 8.2 Fluidized Bed Catalytic Cracking
  • 8.2.1 Process Description
  • 8.3 Modes of Fluidization
  • 8.4 Cracking Reactions
  • 8.4.1 Secondary Reactions
  • 8.5 Thermodynamics of FCC
  • 8.5.1 Transport Phenomena, Reaction Patterns and Kinetic models
  • 8.5.2 Three- and Four-Lump kinetic models
  • 8.6 Process Design Variables
  • 8.6.1 Process Variables
  • 8.6.2 Process Operational Variables
  • 8.7 Material and Energy Balances
  • 8.7.1 Material Balance
  • 8.7.2 Energy Balance
  • 8.8 Heat Recovery
  • 8.9 FCC Yield Correlations
  • 8.10 Estimating Potential Yields of FCC Feed
  • 8.11 Pollution Control
  • 8.12 New Technology
  • 8.12.1 Deep Catalytic Cracking
  • 8.12.2 Shell's Fluid Catalytic Cracking
  • 8.12.3 Fluid Catalytic Cracking High Severity
  • 8.12.4 Fluid Catalytic Cracking for Maximum Olefins
  • 8.13 Refining/Petrochemical Integration
  • 8.14 Metallurgy
  • 8.15 Troubleshooting for Fluidized Catalyst Cracking Units
  • 8.16 Health, Safety and Environment Considerations
  • 8.17 Licensors' Correlations
  • 8.18 Simulation and Modeling Strategy
  • References
  • 9 Catalytic Reforming and Isomerization
  • 9.1 Introduction
  • 9.2 Catalytic Reforming
  • 9.3 Feed Characterization
  • 9.4 Catalytic Reforming Processes
  • 9.4.1 Role of Reformer in the Refinery
  • 9.4.2 UOP Continuous Catalytic Regeneration (CCR) Reforming Process
  • 9.5 Operations of the Reformer Process
  • 9.5.1 Effect of Major Variables in Catalytic Reforming
  • 9.6 Catalytic Reformer Reactors
  • 9.7 Material Balance in Reforming
  • 9.8 Reactions
  • 9.8.1 Naphthene Dehydrogenation to Cyclohexanes
  • 9.8.2 Dehydrocyclization of Paraffins to Aromatics
  • 9.8.3 Dehydroisomerization of Alkylcyclopentanes to Aromatics
  • 9.8.4 Isomerization of n-Paraffins
  • 9.9 Hydrocracking Reactions
  • 9.10 Reforming Catalyst
  • 9.11 Coke Deposition
  • 9.12 Thermodynamics
  • 9.13 Kinetic Models
  • 9.14 The Reactor Model
  • 9.15 Modeling of Naphtha Catalytic Reforming Process
  • 9.16 Isomerization
  • 9.16.1 Thermodynamics
  • 9.16.2 Isomerization Reactions
  • 9.17 Sulfolane Extraction Process
  • 9.17.1 Sulfolane Extraction Unit (SEU) Corrosion Problems
  • 9.17.2 Other Solvents for the Extraction Unit
  • 9.18 Aromatic Complex
  • 9.18.1 Aromatic Separation
  • 9.19 Hydrodealkylation Process
  • 9.19.1 Separation of the Reactor Effluents
  • References
  • 10 Alkylation and Polymerization Processes
  • 10.1 Introduction
  • 10.2 Chemistry of Alkylation
  • 10.3 Catalysts
  • 10.4 Process Variables
  • 10.5 Alkylation Feedstocks
  • 10.6 Alkylation Products
  • 10.7 Sulfuric Acid Alkylation Process
  • 10.8 HF Alkylation
  • 10.9 Kinetics and Thermodynamics of Alkylation
  • 10.10 Polymerization
  • 10.11 HF and H2SO4 Mitigating Releases
  • 10.12 Corrosion Problems
  • 10.13 A New Technology of Alkylation Process Using Ionic Liquid
  • 10.14 Chevron - Honeywell UOP Ionic liquid Alkylation
  • 10.15 Chemical Release and Flash Fire: A Case Study of the Alkylation Unit at the Delaware City Refining Company (DCRC) Involving Equipment Maintenance Incident
  • References
  • 11 Hydrogen Production and Purification
  • 11.1 Hydrogen Requirements in a Refinery
  • 11.2 Process Chemistry
  • 11.3 High-Temperature Shift Conversion
  • 11.4 Low-Temperature Shift Conversion
  • 11.5 Gas Purification
  • 11.6 Purification of Hydrogen Product
  • 11.7 Hydrogen Distribution System
  • 11.8 Off-Gas Hydrogen Recovery
  • 11.9 Pressure Swing Adsorption (PSA) Unit
  • 11.10 Refinery Hydrogen Management
  • 11.11 Hydrogen Pinch Studies
  • References
  • 12 Gas Processing and Acid Gas Removal
  • 12.1 Introduction
  • 12.2 Diesel Hydrodesulfurization (DHDS)
  • 12.3 Hydrotreating Reactions
  • 12.4 Gas Processing
  • 12.4.1 Natural Gas
  • 12.4.2 Gas Processing Methods
  • 12.4.3 Reaction Gas Processes
  • 12.4.4 Sweetening Process
  • 12.4.5 MEROX Process
  • 12.5 Sulfur Management
  • 12.5.1 Sulfur Recovery Processes
  • 12.5.2 Tail Gas Clean Up
  • 12.6 Physical Solvent Gas Processes
  • 12.6.1 Physical and Chemical Processes
  • 12.6.2 Advantages and Disadvantages of the Sulfinol® Process
  • 12.7 Carbonate Process
  • 12.8 Solution Batch Process
  • 12.9 Process Description of Gas Processing using UniSim® Simulation
  • 12.10 Gas Dryer (Dehydration) Design
  • 12.10.1 The Equations
  • 12.10.2 Pressure Drop (?P)
  • 12.10.3 Fouled Bed
  • 12.11 Kremser-Brown-Sherwood Method-No Heat of Absorption
  • 12.11.1 Absorption: Determine Component Absorption in Fixed Tray Tower (Adapted in part from Ref. 12)
  • 12.11.2 Absorption: Determine the Number of Trays for Specified Product Absorption
  • 12.11.3 Stripping: Determine the Number of Theoretical Trays and Stripping Steam or Gas Rate for a Component Recovery
  • 12.11.4 Stripping: Determine Stripping-Medium Rate for a Fixed Recovery
  • 12.12 Absorption: Edmister Method
  • 12.12.1 Absorption and Stripping Efficiency
  • 12.13 Gas Treating Troubleshooting
  • 12.13.1 High Exit Gas Dew Point
  • 12.13.2 High Glycol Losses
  • 12.13.3 Glycol Contamination
  • 12.13.4 Poor Glycol Reconcentration
  • 12.13.5 Low Glycol Circulation - Glycol Pump
  • 12.13.6 High Pressure Drop Across Contactor
  • 12.13.7 High Stripping Still Temperature
  • 12.13.8 High Reboiler Pressure
  • 12.13.9 Firetube Fouling/Hot Spots/Burn Out
  • 12.13.10 High Gas Dew Points
  • 12.13.11 Cause - Inadequate Glycol Circulation Rate
  • 12.13.12 Low Reboiler Temperature
  • 12.13.13 Flash Separator Failure
  • 12.13.14 Cause - Insufficient Reconcentration of Glycol
  • 12.13.15 Cause - Operating Conditions Different from Design
  • 12.13.16 Cause - Low Gas Flow Rates
  • 12.13.17 High Glycol Loss
  • 12.14 Cause - Loss of Glycol Out of Still Column
  • 12.15 The ADIP Process
  • 12.16 Sour Water Stripping Process
  • References
  • Glossary of Petroleum and Technical Terminology
  • Appendix A Equilibrium K values
  • Appendix B Analytical Techniques
  • Appendix C Physical and Chemical Characteristics of Major Hydrocarbons
  • Appendix D A List of Engineering Process Flow Diagrams and Process Data Sheets
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen