High-Resolution NMR Techniques in Organic Chemistry

 
 
Elsevier Science (Verlag)
  • 3. Auflage
  • |
  • erschienen am 22. April 2016
  • |
  • 552 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-099993-7 (ISBN)
 

High-Resolution NMR Techniques in Organic Chemistry, Third Edition, describes the most important NMR spectroscopy techniques for structure elucidation of organic molecules and the investigation of their behavior in solution. Appropriate for students as well as chemists, this thorough revision covers the practical aspects of NMR instrumentation and explores the capabilities and the limitations of key one-dimensional and two-dimensional analytical methods including J-resolved, nuclear Overhauser, diffusion, and experimental spectroscopic techniques.

The Third Edition includes valuable updates on recent hardware developments and common and novel techniques. It also features an entirely new chapter on using NMR methods to study protein-ligand binding processes, reflecting this area's growing importance for life science and medicinal chemistry research in industry and academia. Using accessible figures to present and explain techniques, the book limits complex mathematical descriptions and provides multiple worked examples throughout. Additionally, a new, cumulative 'Example Problem Solving' chapter demonstrates the application of described methods with readily available samples; readers can view the spectra, follow the interpretation, and collect their own data for comparison and practice.

A trusted authority on this critical expertise, High-Resolution NMR Techniques in Organic Chemistry, Third Edition, is an essential resource for every NMR manager and chemistry student.


  • Uniquely covers both the hardware and the analysis of NMR techniques
  • Includes valuable updates on the important, growing area of Ligand-protein binding, recent hardware developments, and additional practical examples
  • Focuses on methods and examples vital for the practicing and student chemist


Tim Claridge has over 25 years of practical experience in NMR Spectroscopy and is presently Professor of Magnetic Resonance and Director of NMR Spectroscopy for Organic Chemistry and Chemical Biology in the Department of Chemistry at the University of Oxford. His interest in NMR was ignited as an undergraduate student of Chemistry and Analytical Science whilst undertaking a year-long industrial placement in the spectroscopy laboratory of a leading pharmaceutical company. He subsequently completed a DPhil in protein NMR spectroscopy under the supervision of the late Andy Derome in the Dyson Perrins Laboratory at the University of Oxford. He then remained in Oxford and was appointed manager of the organic chemistry NMR facilities and in this capacity co-authored the undergraduate text 'Introduction to Organic Spectroscopy (OUP)' with Prof Laurence Harwood and produced the first edition of 'High-Resolution NMR Techniques in Organic Chemistry' (Pergamon Press). He became University Research Lecturer (Reader) in 2006, and was made a full Professor and a Fellow of the Royal Society of Chemistry (RSC) in 2014. He served for many years on the RSC NMR Discussion Group committee including as its Chairman for three years. He has co-authored over 170 research papers and his research interests focus broadly on the application of solution-state NMR methods for characterizing small molecules, and for studying their behavior and their interactions, especially as ligands for biological macromolecules.
  • Englisch
  • London
  • 41,75 MB
978-0-08-099993-7 (9780080999937)
008099993X (008099993X)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Chapter 1 - Introduction
  • 1.1 - The development of high-resolution NMR
  • 1.2 - Modern high-resolution NMR and this book
  • 1.2.1 - What This Book Contains
  • 1.2.2 - Pulse Sequence Nomenclature
  • 1.3 - Applying modern NMR techniques
  • References
  • Chapter 2 - Introducing High-Resolution NMR
  • 2.1 - Nuclear spin and resonance
  • 2.2 - The vector model of NMR
  • 2.2.1 - The Rotating Frame of Reference
  • 2.2.2 - Pulses
  • 2.2.3 - Chemical Shifts and Couplings
  • 2.2.4 - Spin-Echoes
  • 2.3 - Time and frequency domains
  • 2.4 - Spin relaxation
  • 2.4.1 - Longitudinal Relaxation: Establishing Equilibrium
  • 2.4.2 - Measuring T1 with the Inversion Recovery Sequence
  • 2.4.2.1 - Quick T1 Estimation
  • 2.4.3 - Transverse Relaxation: Loss of Magnetisation in the x-y Plane
  • 2.4.4 - Measuring T2 with a Spin-Echo Sequence
  • 2.4.4.1 - T2 Spectrum Editing
  • 2.5 - Mechanisms for relaxation
  • 2.5.1 - The Path to Relaxation
  • 2.5.2 - Dipole-Dipole Relaxation
  • 2.5.3 - Chemical Shift Anisotropy Relaxation
  • 2.5.4 - Spin Rotation Relaxation
  • 2.5.5 - Quadrupolar Relaxation
  • 2.5.5.1 - Scalar Coupling to Quadrupolar Nuclei
  • 2.6 - Dynamic effects in NMR
  • 2.6.1 - The Influence of Dynamic Exchange
  • 2.6.1.1 - Two-Site Exchange: Equal Populations
  • 2.6.1.2 - Two-Site Exchange: Unequal Populations
  • 2.6.1.3 - Two-Site Exchange between Scalar Coupled Nuclei
  • 2.6.1.4 - Scalar Coupling to Exchanging Sites
  • 2.6.1.5 - Intermolecular Exchange and J Coupling
  • 2.6.1.6 - Some Practicalities Regarding NMR Timescales
  • 2.6.2 - Lineshape Analysis and Thermodynamic Parameters
  • 2.6.2.1 - Practical Considerations in Lineshape Analysis
  • 2.6.3 - Magnetisation Transfer under Slow-Exchange Conditions
  • 2.6.3.1 - Practical Considerations for Magnetisation Transfer
  • References
  • Chapter 3 - Practical Aspects of High-Resolution NMR
  • 3.1 - An overview of the NMR spectrometer
  • 3.2 - Data acquisition and processing
  • 3.2.1 - Pulse Excitation
  • 3.2.1.1 - Off-Resonance Effects
  • 3.2.2 - Signal Detection
  • 3.2.3 - Sampling the FID
  • 3.2.3.1 - The Nyquist Condition
  • 3.2.3.2 - Filtering Noise
  • 3.2.3.3 - Acquisition Times and Digital Resolution
  • 3.2.3.4 - Zero-Filling and Truncation Artefacts
  • 3.2.3.5 - Linear Prediction
  • 3.2.4 - Quadrature Detection
  • 3.2.4.1 - Simultaneous and Sequential Sampling
  • 3.2.4.2 - Aliased Signals
  • 3.2.4.3 - Quadrature Images
  • 3.2.4.4 - Digital Quadrature Detection
  • 3.2.5 - Phase Cycling
  • 3.2.6 - Dynamic Range and Signal Averaging
  • 3.2.6.1 - Signal Averaging
  • 3.2.6.2 - Oversampling and Digital Filtering
  • 3.2.7 - Window Functions
  • 3.2.7.1 - Sensitivity Enhancement
  • 3.2.7.2 - Resolution Enhancement
  • 3.2.8 - Phase Correction
  • 3.3 - Preparing the sample
  • 3.3.1 - Selecting the Solvent
  • 3.3.2 - Reference Compounds
  • 3.3.3 - Tubes and Sample Volumes
  • 3.3.4 - Filtering and Degassing
  • 3.4 - Preparing the spectrometer
  • 3.4.1 - The Probe
  • 3.4.1.1 - Flow Probes
  • 3.4.2 - Probe Design and Sensitivity
  • 3.4.2.1 - Detection Sensitivity
  • 3.4.2.2 - Mass and Concentration Sensitivity
  • 3.4.2.3 - Microprobes
  • 3.4.2.4 - Micro-Flow Probes
  • 3.4.2.5 - Cryogenic Probes
  • 3.4.3 - Tuning the Probe
  • 3.4.3.1 - Tuning and Matching
  • 3.4.4 - The Field Frequency Lock
  • 3.4.4.1 - The Lock System
  • 3.4.4.2 - Optimising the Lock
  • 3.4.4.3 - Acquiring Data Unlocked
  • 3.4.5 - Optimising Field Homogeneity: Shimming
  • 3.4.5.1 - The Shim System
  • 3.4.5.2 - Shimming
  • 3.4.5.3 - Common Lineshape Defects
  • 3.4.5.4 - Shimming Using the FID or Spectrum
  • 3.4.5.5 - Gradient Shimming
  • 3.4.6 - Reference Deconvolution
  • 3.5 - Spectrometer calibrations
  • 3.5.1 - Radiofrequency Pulses
  • 3.5.1.1 - Rf Field Strengths
  • 3.5.1.2 - Observe Pulses: High Sensitivity
  • 3.5.1.3 - Observe Pulses: Single-Scan Nutation Spectroscopy
  • 3.5.1.4 - Observe Pulses: Low Sensitivity
  • 3.5.1.5 - Indirect Pulses
  • 3.5.1.6 - Indirect Pulses on High-Abundance Nuclides
  • 3.5.1.7 - Indirect Pulses on Low-Abundance Nuclides
  • 3.5.1.8 - Homonuclear Decoupling Field Strength
  • 3.5.1.9 - Heteronuclear Decoupling Field Strength
  • 3.5.2 - Pulsed Field Gradients
  • 3.5.2.1 - Gradient Strengths
  • 3.5.2.2 - Gradient Recovery Times
  • 3.5.3 - Sample Temperature
  • 3.6 - Spectrometer performance tests
  • 3.6.1 - Lineshape and Resolution
  • 3.6.2 - Sensitivity
  • 3.6.3 - Solvent Presaturation
  • References
  • Chapter 4 - One-Dimensional Techniques
  • 4.1 - Single-pulse experiment
  • 4.1.1 - Optimising Sensitivity
  • 4.1.2 - Quantitative NMR Measurements and Integration
  • 4.1.2.1 - Quantitative NMR-qNMR
  • 4.1.2.2 - Data Collection
  • 4.1.2.3 - Data Processing
  • 4.1.3 - Quantification with an Electronic Calibrant: ERETIC
  • 4.1.3.1 - Experimental Implementation
  • 4.1.4 - Quantification with an External Calibrant: PULCON
  • 4.1.4.1 - Experimental Implementation
  • 4.2 - Spin-decoupling methods
  • 4.2.1 - Basis of Spin Decoupling
  • 4.2.2 - Homonuclear Decoupling
  • 4.2.2.1 - Bloch-Siegert Shifts
  • 4.2.2.2 - Experimental Implementation
  • 4.2.3 - Heteronuclear Decoupling
  • 4.2.3.1 - X{1H} Decoupling
  • 4.2.3.2 - 1H{X} Decoupling
  • 4.3 - Spectrum editing with spin-echoes
  • 4.3.1 - J-Modulated Spin-Echo
  • 4.3.2 - APT
  • 4.4 - Sensitivity enhancement and spectrum editing
  • 4.4.1 - Polarisation Transfer
  • 4.4.2 - INEPT
  • 4.4.2.1 - Refocused INEPT
  • 4.4.2.2 - Sensitivity Gains
  • 4.4.2.3 - Editing with INEPT
  • 4.4.3 - DEPT
  • 4.4.3.1 - DEPT Sequence
  • 4.4.3.2 - Editing with DEPT
  • 4.4.3.3 - Optimising Sensitivity
  • 4.4.4 - DEPTQ
  • 4.5 - Observing quadrupolar nuclei
  • References
  • Chapter 5 - Introducing Two-Dimensional and Pulsed Field Gradient NMR
  • 5.1 - Two-dimensional experiments
  • 5.1.1 - Generating the Second Dimension
  • 5.1.2 - Correlating Coupled Spins
  • 5.2 - Practical aspects of 2D NMR
  • 5.2.1 - Two-Dimensional Lineshapes and Quadrature Detection
  • 5.2.1.1 - Phase-sensitive Presentations
  • 5.2.1.2 - Aliasing in Two Dimensions
  • 5.2.1.3 - Absolute Value Presentations
  • 5.2.2 - Axial Peaks
  • 5.2.3 - Instrumental Artefacts
  • 5.2.3.1 - f2 Quadrature Artefacts
  • 5.2.3.2 - t1-Noise
  • 5.2.3.3 - Symmetrisation
  • 5.2.4 - Two-Dimensional Data Acquisition
  • 5.2.4.1 - Non-Uniform Sampling
  • 5.2.5 - Two-Dimensional Data Processing
  • 5.2.5.1 - Phase Correction
  • 5.2.5.2 - Presentation
  • 5.3 - Coherence and coherence transfer
  • 5.3.1 - Coherence Transfer Pathways
  • 5.4 - Gradient-selected spectroscopy
  • 5.4.1 - Signal Selection with Pulsed Field Gradients
  • 5.4.1.1 - Defocusing and Refocusing with Pulsed Field Gradients
  • 5.4.1.2 - Selective Refocusing
  • 5.4.1.3 - Gradient-Selected Correlation Spectroscopy
  • 5.4.2 - Phase-Sensitive Experiments: Echo-Antiecho Selection
  • 5.4.3 - Pulsed Field Gradients in High-Resolution NMR
  • 5.4.3.1 - Advantages of Field Gradients
  • 5.4.3.2 - Limitations of Field Gradients
  • 5.4.4 - Practical Implementation of Pulsed Field Gradients
  • 5.4.5 - Fast Data Acquisition: Single-Scan Two-Dimensional NMR
  • References
  • Chapter 6 - Correlations Through the Chemical Bond I: Homonuclear Shift Correlation
  • 6.1 - Correlation spectroscopy: COSY
  • 6.1.1 - Interpreting COSY
  • 6.1.2 - Peak Fine Structure
  • 6.1.2.1 - Signal Phases in Phase-Sensitive COSY
  • 6.1.3 - Which COSY Approach?
  • 6.1.4 - COSY-b
  • 6.1.5 - Double-Quantum Filtered COSY (DQF-COSY)
  • 6.1.5.1 - The DQF Sequence
  • 6.1.5.2 - Interpreting Multiplet Structure
  • 6.1.5.3 - Measuring Coupling Constants
  • 6.1.5.4 - Higher Order Multiple-Quantum Filters
  • 6.1.6 - Long-Range COSY: Detecting Small Couplings
  • 6.1.7 - Relayed-COSY
  • 6.2 - Total correlation spectroscopy: TOCSY
  • 6.2.1 - The TOCSY Sequence
  • 6.2.1.1 - The Spin Lock and Coherence Transfer
  • 6.2.2 - Applying TOCSY
  • 6.2.3 - Implementing TOCSY
  • 6.2.3.1 - Gradient-Selected TOCSY
  • 6.2.4 - One-Dimensional TOCSY
  • 6.2.4.1 - Eliminating Zero-Quantum Artefacts
  • 6.3 - Correlating dilute spins: INADEQUATE
  • 6.3.1 - Two-Dimensional INADEQUATE
  • 6.3.2 - One-Dimensional INADEQUATE
  • 6.3.3 - Implementing INADEQUATE
  • 6.3.3.1 - Experimental Setup
  • 6.4 - Correlating dilute spins via protons: ADEQUATE
  • 6.4.1 - Two-Dimensional ADEQUATE
  • 6.4.2 - Enhancements to ADEQUATE
  • References
  • Chapter 7 - Correlations Through the Chemical Bond II: Heteronuclear Shift Correlation
  • 7.1 - Introduction
  • 7.2 - Sensitivity
  • 7.3 - Heteronuclear single-bond correlations
  • 7.3.1 - Heteronuclear Single-Quantum Correlation
  • 7.3.1.1 - HSQC Sequence
  • 7.3.1.2 - Interference From Parent 1H-12C/1H-14N Resonances
  • 7.3.1.3 - Sensitivity Improvement: PEP
  • 7.3.1.4 - Practical Set-Up
  • 7.3.2 - Hybrid HSQC Experiments
  • 7.3.2.1 - 2D Multiplicity Editing
  • 7.3.2.2 - Utilising X-Spin Shift Dispersion
  • 7.3.2.3 - Editing and Filtering 1D Proton Spectra
  • 7.3.3 - Heteronuclear Multiple-Quantum Correlation
  • 7.3.3.1 - HMQC Sequence
  • 7.3.3.2 - Influence of Homonuclear Proton Couplings
  • 7.3.3.3 - BIRD-HMQC: Suppressing Parent Resonances Without Gradient Pulses
  • 7.4 - Heteronuclear multiple-bond correlations
  • 7.4.1 - HMBC Sequence
  • 7.4.1.1 - Phase-Sensitive HMBC
  • 7.4.1.2 - Suppressing Parent Resonances
  • 7.4.2 - Applying HMBC
  • 7.4.2.1 - Practical Set-Up
  • 7.4.3 - HMBC Extensions and Variants
  • 7.4.3.1 - Low-Pass J Filtration: Removing One-Bond Correlations
  • 7.4.3.2 - Constant Time HMBC: Eliminating Proton-Proton Coupling in f1
  • 7.4.3.3 - Band-Selective HMBC: Optimising f1 Resolution
  • 7.4.3.4 - ACCORDION Optimisation: Broadband nJXH Detection
  • 7.4.4 - H2BC: Differentiating 2JCH and 3JCH HMBC Correlations
  • 7.4.5 - Measuring Long-Range nJXH Coupling Constants
  • 7.4.5.1 - Using HMBC
  • 7.4.5.2 - Using HSQMBC
  • 7.4.6 - Long-Range HSQMBC: Interrogating Proton-Sparse Molecules
  • 7.5 - Heteronuclear X-detected correlations
  • 7.5.1 - Single-Bond Heteronuclear Correlations
  • 7.5.1.1 - Homonuclear Decoupling in f1
  • 7.5.2 - Multiple-Bond Correlations and Small Couplings
  • 7.6 - Heteronuclear X-Y correlations
  • 7.6.1 - Direct X-Y Correlations
  • 7.6.2 - Indirect 1H-Detected X-Y Correlations
  • 7.7 - Parallel acquisition NMR with multiple receivers
  • References
  • Chapter 8 - Separating Shifts and Couplings: J-Resolved and Pure Shift Spectroscopy
  • 8.1 - Introduction
  • 8.2 - Heteronuclear J-resolved spectroscopy
  • 8.2.1 - Measuring Long-Range Proton-Carbon Coupling Constants
  • 8.2.1.1 - Semiselective
  • 8.2.1.2 - Selective
  • 8.2.1.3 - Selective with Proton Detection
  • 8.2.2 - Practical Considerations
  • 8.2.2.1 - Experimental Setup
  • 8.3 - Homonuclear J-resolved spectroscopy
  • 8.3.1 - Tilting, Projections and Symmetrisation
  • 8.3.2 - Applications
  • 8.4 - 'Indirect' homonuclear J-resolved spectroscopy
  • 8.5 - Pure shift broadband-decoupled 1H spectroscopy
  • 8.5.1 - The Basis of Pure Shift Spectroscopy
  • 8.5.2 - Pseudo-2D Pure Shift
  • 8.5.3 - Real-Time Pure Shift
  • 8.5.4 - Pure Shift Refocussing Elements
  • 8.5.4.1 - Band Selective
  • 8.5.4.2 - Zangger-Sterk
  • 8.5.4.3 - BIRD
  • 8.5.4.4 - PSYCHE
  • References
  • Chapter 9 - Correlations Through Space: The Nuclear Overhauser Effect
  • 9.1 - Introduction
  • Part I - Theoretical aspects
  • 9.2 - Definition of the NOE
  • 9.3 - Steady-state NOEs
  • 9.3.1 - NOEs in a Two-Spin System
  • 9.3.1.1 - Origin of the NOE
  • 9.3.1.2 - Spin Relaxation and Dipolar Coupling
  • 9.3.1.3 - NOEs and Molecular Motion
  • 9.3.1.4 - NOEs and Internuclear Separation
  • 9.3.1.5 - Heteronuclear NOEs
  • 9.3.2 - NOEs in a Multi-Spin System
  • 9.3.2.1 - Additional Relaxation Pathways
  • 9.3.2.2 - Internuclear Separations (Again)
  • 9.3.2.3 - Indirect Effects and Spin Diffusion
  • 9.3.2.4 - Saturation Transfer
  • 9.3.3 - Summary
  • 9.3.4 - Applications
  • 9.3.4.1 - E versus Z Geometry
  • 9.3.4.2 - Aromatic Substitution Position
  • 9.3.4.3 - Substituent Configuration
  • 9.3.4.4 - Resonance Assignment
  • 9.3.4.5 - Endo versus Exo Adducts
  • 9.3.4.6 - Conformational Preference
  • 9.4 - Transient NOEs
  • 9.4.1 - Nuclear Overhauser Effect Kinetics
  • 9.4.2 - Measuring Internuclear Separations
  • 9.5 - Rotating frame NOEs
  • Part II - Practical aspects
  • 9.6 - Measuring transient NOEs: NOESY
  • 9.6.1 - The 2D NOESY Sequence
  • 9.6.1.1 - Chemical Exchange Crosspeaks in NOESY
  • 9.6.1.2 - Zero-Quantum Interference in NOESY
  • 9.6.1.3 - Optimum Choice of Mixing Time
  • 9.6.1.4 - Distance Measurement
  • 9.6.2 - 1D NOESY Sequences
  • 9.6.2.1 - 1D Gradient NOESY
  • 9.6.2.2 - Chemical Shift Selective Filters and Doubly Selective TOCSY-NOESY
  • 9.6.2.3 - Interpreting One-Dimensional NOESY
  • 9.6.3 - Applications
  • 9.7 - Measuring rotating frame NOEs: ROESY
  • 9.7.1 - The 2D ROESY Sequence
  • 9.7.1.1 - Complications with ROESY
  • 9.7.2 - 1D ROESY Sequences
  • 9.7.3 - Applications
  • 9.8 - Measuring steady-state NOEs: NOE difference
  • 9.8.1 - Optimising Difference Experiments
  • 9.8.1.1 - Minimising Subtraction Artefacts
  • 9.8.1.2 - Optimising Presaturation
  • 9.8.1.3 - Selective Saturation and Selective Population Transfer
  • 9.8.1.4 - Quantifying Enhancements
  • 9.9 - Measuring heteronuclear NOEs: HOESY
  • 9.9.1 - 2D Heteronuclear NOEs
  • 9.9.2 - 1D Heteronuclear Nuclear Overhauser Effects
  • 9.9.3 - Applications
  • 9.10 - Experimental considerations for NOE measurements
  • 9.11 - Measuring chemical exchange: EXSY
  • 9.12 - Residual dipolar couplings
  • 9.12.1 - Measuring RDCs
  • 9.12.1.1 - Alignment Media
  • 9.12.1.2 - Which RDCs to Measure?
  • 9.12.2 - Applying RDCs
  • References
  • Chapter 10 - Diffusion NMR Spectroscopy
  • 10.1 - Introduction
  • 10.1.1 - Diffusion Coefficients and Molecular Size
  • 10.2 - Measuring self-diffusion by NMR
  • 10.2.1 - The Pulsed Field Gradient Spin-Echo
  • 10.2.2 - The Pulsed Field Gradient Stimulated-Echo
  • 10.2.3 - Enhancements to the Stimulated-Echo
  • 10.2.3.1 - The BPP-STE Sequence
  • 10.2.3.2 - The BPP-LED Sequence
  • 10.2.3.3 - The 'One-Shot' Sequence
  • 10.2.4 - Data Analysis: Regression Fitting
  • 10.2.5 - Data Analysis: Pseudo-2D Presentation
  • 10.3 - Practical aspects of diffusion NMR spectroscopy
  • 10.3.1 - The Problem of Convection
  • 10.3.1.1 - Diagnosing Convection
  • 10.3.1.2 - Dealing with Convection
  • 10.3.1.3 - Temperature Gradients and Decoupling
  • 10.3.1.4 - Tube Diameters
  • 10.3.1.5 - Solvent Viscosity
  • 10.3.1.6 - Sample Spinning
  • 10.3.1.7 - Convection-Compensating Sequences
  • 10.3.1.8 - Summary
  • 10.3.2 - Calibrating Gradient Amplitudes
  • 10.3.3 - Optimising Diffusion Parameters
  • 10.3.3.1 - Diffusion Measurements with Nuclides Other than 1H
  • 10.3.4 - Hydrodynamic Radii and Molecular Weights
  • 10.4 - Applications of diffusion NMR spectroscopy
  • 10.4.1 - Signal Suppression
  • 10.4.2 - Hydrogen Bonding
  • 10.4.3 - Host-Guest Complexes
  • 10.4.4 - Ion Pairing
  • 10.4.5 - Supramolecular Assemblies
  • 10.4.6 - Aggregation
  • 10.4.7 - Mixture Separation
  • 10.4.8 - Macromolecular Characterisation
  • 10.5 - Hybrid diffusion sequences
  • 10.5.1 - Sensitivity-Enhanced Heteronuclear Methods
  • 10.5.2 - Spectrum-Edited Methods
  • 10.5.3 - Diffusion-Encoded Two-Dimensional Methods (or 3D DOSY)
  • 10.5.3.1 - Diffusion-Encoded Correlation Spectroscopy
  • 10.5.3.2 - Diffusion-Encoded Total Correlation Spectroscopy
  • 10.5.3.3 - Diffusion-Encoded J-Resolved Technique
  • 10.5.3.4 - Diffusion-Encoded HSQC
  • References
  • Chapter 11 - Protein-Ligand Screening by NMR
  • 11.1 - Introduction
  • 11.2 - Protein-ligand binding equilibria
  • 11.3 - Resonance lineshapes and relaxation editing
  • 11.3.1 - 1H Relaxation-Edited NMR
  • 11.3.2 - 19F NMR
  • 11.3.3 - Paramagnetic Relaxation Enhancement
  • 11.4 - Saturation transfer difference
  • 11.4.1 - The STD Sequence and Practicalities
  • 11.4.1.1 - Sample Preparation
  • 11.4.1.2 - Extended Sequences
  • 11.4.2 - Epitope Mapping by STD and DIRECTION
  • 11.4.3 - KD Measurement by STD
  • 11.5 - Water-LOGSY
  • 11.5.1 - The Water-LOGSY Sequence
  • 11.5.2 - Water-LOGSY Practicalities
  • 11.6 - Exchange-transferred nuclear Overhauser effects
  • 11.7 - Competition ligand screening
  • 11.7.1 - Competitive Displacement
  • 11.7.2 - Reporter Ligand Screening
  • 11.7.3 - 19F FAXS
  • 11.8 - Protein observe methods
  • 11.8.1 - 1H-15N Mapping
  • 11.8.1.1 - Practical Aspects
  • 11.8.2 - 1H-13C Mapping
  • 11.8.3 - 19F Mapping
  • References
  • Chapter 12 - Experimental Methods
  • 12.1 - Composite pulses
  • 12.1.1 - A Myriad of Pulses
  • 12.1.2 - Inversion Versus Refocusing
  • 12.2 - Adiabatic and broadband pulses
  • 12.2.1 - Common Adiabatic Pulses
  • 12.2.2 - Broadband Inversion Pulses: BIPs
  • 12.3 - Broadband decoupling and spin locking
  • 12.3.1 - Broadband Adiabatic Decoupling
  • 12.3.2 - Spin Locking
  • 12.4 - Selective excitation and soft pulses
  • 12.4.1 - Shaped Soft Pulses
  • 12.4.1.1 - Gaussian Pulses
  • 12.4.1.2 - Pure-Phase Pulses
  • 12.4.1.3 - Implementing Shaped Pulses
  • 12.4.2 - Excitation Sculpting
  • 12.4.3 - Chemical Shift Selective Filters
  • 12.4.4 - DANTE Sequences
  • 12.4.5 - Practical Considerations
  • 12.4.5.1 - Amplitude Calibration
  • 12.4.5.2 - Phase Calibration
  • 12.5 - Solvent suppression
  • 12.5.1 - Presaturation
  • 12.5.2 - Zero Excitation
  • 12.5.2.1 - Jump-Return
  • 12.5.2.2 - Binomial Sequences
  • 12.5.3 - Pulsed Field Gradients
  • 12.5.3.1 - WATERGATE
  • 12.5.3.2 - Excitation Sculpting
  • 12.5.3.3 - Perfect Echo Suppression
  • 12.6 - Suppression of zero-quantum coherences
  • 12.6.1 - The Variable-Delay Z-Filter
  • 12.6.2 - Zero-Quantum Dephasing
  • 12.6.2.1 - Implementing Zero-Quantum Dephasing
  • 12.7 - Heterogeneous samples and magic angle spinning
  • 12.8 - Hyperpolarisation
  • 12.8.1 - Para-Hydrogen-Induced Polarisation
  • 12.8.2 - Dynamic Nuclear Polarisation
  • References
  • Chapter 13 - Structure Elucidation and Spectrum Assignment
  • 13.1 - 1H NMR
  • 13.2 - 1H-13C edited HSQC
  • 13.3 - 1H-1H COSY and variants
  • 13.3.1 - Double-Quantum Filtered COSY
  • 13.4 - 1H-1H TOCSY and variants
  • 13.4.1 - HSQC-TOCSY
  • 13.5 - 13C NMR
  • 13.6 - HMBC and variants
  • 13.6.1 - 1H-13C HMBC
  • 13.6.2 - 31P and 1H-31P HMBC
  • 13.6.3 - 1H-13C HMBC Again
  • 13.6.4 - 19F and 19F-13C HMBC
  • 13.7 - Nuclear Overhauser effects
  • 13.7.1 - 2D NOESY
  • 13.7.2 - 1D NOESY
  • 13.7.3 - 1D 19F HOESY
  • 13.8 - Rationalization of 1H-1H coupling constants
  • 13.9 - Summary
  • Appendix
  • Glossary of acronyms
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

77,29 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok