Gasification of Waste Materials

Technologies for Generating Energy, Gas, and Chemicals from Municipal Solid Waste, Biomass, Nonrecycled Plastics, Sludges, and Wet Solid Wastes
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 24. Oktober 2017
  • |
  • 162 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-812717-9 (ISBN)
 

Gasification of Waste Materials: Technologies for Generating Energy, Gas and Chemicals from MSW, Biomass, Non-recycled Plastics, Sludges and Wet Solid Wastes explores the most recent gasification technologies developing worldwide to convert waste solids to energy and synthesis gas and chemical products. The authors examine the thermodynamic aspects, accepted reaction mechanisms and kinetic constraints of using municipal solid waste (MSW), biomass, non-recycled plastics (NRP), sludges and wet solid wastes as feedstock. They identify the distinctions between pyrolysis, gasification, plasma, hydrothermal gasification, and supercritical systems.

A comprehensive summary of laboratory and demonstration activities is presented, as well as field scale systems that have been in operation using solid waste streams as input, highlighting their areas of disconnect and alignment. The book also provides a summary of information on emissions from the stack, comparing them with other thermal conversion systems using similar feedstock. It then goes on to assess the areas that must be improved to ensure gasification systems become as successful as combustion systems operating on waste streams, ranging from feedstock processing to gasifier output gas clean-up, downstream system requirements and corrosion.

The economics and future projections for waste gasification systems are also discussed. For its consolidation of the current technical knowledge, this text is recommended for engineering researchers, graduate students, industry professionals, municipal engineers and decision makers when planning, designing and deploying waste to energy projects, especially those using MSW as feedstock.

  • Provides field demonstrations of large scale systems, their results and the challenges that need to be overcome when developing commercial applications and possible solutions
  • Presents the most recent technologies in lab and demonstration scale
  • Examines the critical development needs and real life challenges for the deployment of waste to energy technologies
  • Provides information on the economics and sustainability of these technologies, as well as their future perspectives


Dr. Simona Ciuta was born in Bucharest, Romania. She received her B.S. in Environmental Engineering from Politehnica University of Bucharest. Dr. Ciuta developed her bachelor's thesis at the University of Trento, Italy after being awarded an Erasmus Scholarship. She obtained a Masters Degree in Environmental Management and a Ph.D. in Power Engineering from Politehnica University of Bucharest, Romania. During her Ph.D. she was invited at University of Trento, Italy for research stages to further develop her thesis.
Currently, Dr. Ciuta works as a Post-Doctoral Research Associate for the Combustion and Catalysis Laboratory in the Department of Chemical Engineering at City College of New York (CCNY). Prior to CCNY, she was an Assistant Professor in the Power Engineering Department at Politehnica University of Bucharest. She worked as Research Assistant on several European Union funded projects during her Ph.D, in particular in the field of biomass conversion into energy, waste characterization and advanced thermal processes.
Dr. Ciuta`s research focuses on waste materials conversion into energy, waste management, thermal processes such as gasification and pyrolysis. She published 12 journal papers, 2 book chapters, and approximately 30 conference proceedings papers in the field. Dr. Ciuta developed a one of a kind intra-particle gas sampling technique that provides significant insight into fundamental reaction sequences happening during thermal decomposition of waste materials.
  • Englisch
  • San Diego
  • |
  • USA
  • 1,66 MB
978-0-12-812717-9 (9780128127179)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Gasification of Waste Materials
  • Copyright Page
  • Contents
  • 1. Introduction and Background
  • Acknowledgments
  • References
  • 2. Fundamentals of Gasification and Pyrolysis
  • 2.1 Pyrolysis and Gasification Stages
  • 2.1.1 Drying
  • 2.1.2 Pyrolysis
  • 2.1.2.1 Pyrolysis of biomass
  • 2.1.3 Oxidation
  • 2.1.4 Char reduction
  • 2.2 Pyrolysis and Gasification By-Products
  • 2.2.1 Tars
  • 2.2.2 Char
  • 2.2.2.1 Activated carbon
  • 2.3 Process Conditions
  • 2.3.1 Gasification agents
  • 2.3.2 Heating rate
  • 2.3.3 Heat requirements
  • 2.4 Liquid Fuels
  • 2.4.1 Fisher-Tropsch synthesis
  • 2.4.2 Pyrolysis to liquid fuels (bio-oil)
  • 2.4.3 Methanol
  • 2.4.4 Mixed alcohols
  • 2.4.5 Dimethyl ether
  • 2.4.6 Fermentation
  • 2.5 Plasma Gasification Technology
  • 2.6 Hydrothermal Processes-Supercritical Water Gasification
  • 2.6.1 Carbonization
  • 2.6.2 Oxidation
  • 2.6.3 Liquefaction
  • 2.6.4 Hydrothermal gasification
  • References
  • 3. Laboratory/Demonstration-Scale Developments
  • 3.1 Introduction
  • 3.2 Biomass Facilities
  • 3.2.1 Gas Technology Institute Gasification Pilot, USA
  • 3.2.2 ICM/Pheonix Bioenergy, USA
  • 3.2.3 BLUEGAS, Great Point, USA
  • 3.2.4 VTT Bioruukki, Finland
  • 3.2.5 Technical University of Vienna, Austria
  • 3.2.6 MILENA Pilot Plant, Netherlands
  • 3.2.7 Verena KIT
  • 3.2.8 Other successful biomass pilot facilities
  • 3.2.8.1 Biomass Gasification Research at Iowa State University
  • 3.2.8.2 GAYA Project-GDF SUEZ
  • 3.3 Discontinued Biomass Projects
  • 3.3.1 Ferco SilvaGas
  • 3.3.2 Range fuels
  • 3.4 Biomass Gasification for Small-Scale CHP
  • 3.4.1 Spanner RE2 GmbH
  • 3.4.2 Kuntschar Energieerzeugung GmbH
  • 3.4.3 Burkhardt Energietechnik GmbH
  • 3.4.4 URBAS Maschinenfabrik G.m.b.H.
  • 3.4.5 Hans-Werner Gräbner Behälter- und Apparatebau Holzgasanlagen
  • 3.4.6 Syncraft Engineering GmbH
  • 3.4.7 Stadtwerke Rosenheim GmbH
  • 3.4.8 Pyrox GmbH
  • 3.4.9 Xylogas Energieanlagenforschung GmbH
  • 3.5 Conclusions
  • References
  • 4. Field Scale Developments
  • 4.1 Introduction
  • 4.2 Biomass and Municipal Solid Waste Facilities
  • 4.2.1 Overview
  • 4.2.2 Staged gasification
  • 4.2.2.1 Energos
  • 4.2.3 Slagging gasification
  • 4.2.3.1 Nippon Steel
  • 4.2.3.2 Ebara
  • 4.2.3.3 Thermoselect
  • 4.2.4 Plasma gasification
  • 4.2.4.1 AlterNRG
  • 4.2.4.2 InEnTec
  • 4.2.5 Summary table of field scale municipal solid waste gasification facilities worldwide
  • 4.2.6 Municipal solid waste gasification for fuel applications
  • 4.2.7 Case study-Enerkem waste to fuels and chemicals process
  • 4.2.7.1 Process description
  • 4.2.7.2 Pilot study to determine impact of plastics in the feedstock for gasification
  • 4.2.7.3 Impact of plastics in the performance from operations data of pilot study
  • 4.2.7.3.1 Syngas composition
  • 4.2.7.3.2 Final product yield and char generation
  • 4.2.7.3.3 Carbon conversion and energy efficiency
  • 4.3 Nonrecycled Plastics Pyrolysis Facilities
  • 4.3.1 Overview
  • 4.3.2 Case study-Golden Renewable Energy
  • 4.3.2.1 Process description
  • 4.3.2.2 Due diligence testing
  • 4.3.2.3 Process efficiencies based on operations data from due diligence
  • 4.3.2.3.1 Syngas composition
  • 4.3.2.3.2 Product yields and environmental impact
  • 4.3.2.3.3 Carbon conversion and energy efficiency
  • 4.4 Wet Solid Waste and Sludge Facilities
  • 4.4.1 Overview
  • 4.4.2 Case study-Sustainable Waste Power Systems
  • 4.4.2.1 Process description
  • 4.4.2.2 Due diligence testing
  • 4.4.2.3 Process efficiencies based on operations data from due diligence
  • 4.4.2.3.1 Syngas composition
  • 4.4.2.3.2 Product yields and environmental impact
  • 4.4.2.3.3 Carbon conversion and energy efficiency
  • 4.5 Concluding Remarks on Future Growth of Field Scale Technology in Waste Gasification and Pyrolysis
  • References
  • 5. Emissions
  • 5.1 Introduction
  • 5.2 Air Emissions of Waste Gasification and Pyrolysis Plants
  • 5.2.1 Primary pollutants
  • 5.2.1.1 Nitrogen oxides and sulfur oxides
  • 5.2.1.2 Carbon monoxide, carbon dioxide, and volatile organic compounds
  • 5.2.1.3 Dioxins/furans
  • 5.2.1.4 Particulate matter and fly ash
  • 5.2.1.5 Acid gases, heavy metals, and tars
  • 5.2.2 Air pollution control systems
  • 5.2.3 Air emissions regulatory standards and performance data
  • 5.2.3.1 Criteria pollutant standards for thermal waste systems
  • 5.2.3.2 Hazardous air pollutants standards, new source performance standards, and emissions guidelines for thermal waste sy...
  • 5.2.3.3 Application of regulation standards to waste gasifiers and pyrolysis plants
  • 5.2.4 Case study: air emissions of a plastics-to-oil pyrolysis facility
  • 5.3 Solid Residual and Wastewater
  • 5.3.1 Solid emissions
  • 5.3.1.1 Toxicity characteristic leaching procedure and leaching environmental assessment framework standards
  • 5.3.1.2 Beneficial use of ash
  • 5.3.1.3 Case study: char composition from biomass gasification and plastics pyrolysis
  • 5.3.2 Wastewater
  • 5.4 Life Cycle Assessment Comparison of Waste Management Methods
  • 5.4.1 Case study-emissions of cement kiln using refuse-derived fuel compared to petcoke
  • 5.5 Concluding Remarks
  • References
  • 6. Critical Development Needs
  • 6.1 Regulations and Markets
  • 6.2 Gas Cleaning
  • 6.2.1 Use of syngas for power and heat
  • 6.2.2 Tars
  • 6.3 Technology Challenges
  • 6.3.1 Ash and char challenges
  • 6.3.2 Other challenges
  • 6.4 Feedstock Challenges
  • 6.4.1 Municipal solid waste
  • 6.4.2 Biomass
  • 6.5 Corrosion
  • 6.6 Auxiliary Loads and Energy Efficiency
  • References
  • 7. Economic Summary
  • 7.1 Introduction
  • 7.2 Cost Breakdown of Waste Gasification and Pyrolysis Plants
  • 7.2.1 Waste gasification and pyrolysis economics: case studies
  • 7.3 Commercialization of Waste Gasification and Pyrolysis Facilities
  • 7.4 Impact of Policy on Waste Thermal Conversion Economics
  • 7.5 Cost Comparison of Waste Management Practices
  • 7.6 Concluding Remarks
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

130,90 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen