Reservoir Engineering in Modern Oilfields

Vertical, Deviated, Horizontal and Multilateral Well Systems
 
 
Standards Information Network (Verlag)
  • erschienen am 26. Juli 2016
  • |
  • 352 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-28460-4 (ISBN)
 
Real-world reservoirs are layered, heterogeneous and anisotropic, exposed to water and gas drives, faults, barriers and fractures. They are produced by systems of vertical, deviated, horizontal and multilateral wells whose locations, sizes, shapes and topologies are dictated "on the fly, at random"by petroleum engineers and drillers at well sites. Wells may be pressure or rate-constrained, with these roles re-assigned during simulation with older laterals shut-in, newer wells drilled and brought on stream, and so on. And all are subject to steady and transient production, each satisfying different physical and mathematical laws, making reservoir simulation an art difficult to master and introducing numerous barriers to entry. All of these important processes can now be simulated in any order using rapid, stable and accurate computational models developed over two decades.
And what if it were further possible to sketch complicated geologies and lithologies, plus equally complex systems of general wells, layer-by-layer using Windows Notepad? And with no prior reservoir simulation experience and only passing exposure to reservoir engineering principles? Have the user press "Simulate," and literally, within minutes, produce complicated field-wide results, production forecasts, and detailed three-dimensional color pressure plots from integrated graphics algorithms?
Developed over years of research, this possibility has become reality. The author, an M.I.T. trained scientist who has authored fifteen original research books, over a hundred papers and forty patents, winner of a prestigious British Petroleum Chairman's Innovation Award in reservoir engineering and a record five awards from the United States Department of Energy, has delivered just such a product, making real-time planning at the well-site simple and practical. Workflows developed from experience as a practicing reservoir engineer are incorporated into "intelligent menus" that make in-depth understanding of simulation principles and readings of user manuals unnecessary. This volume describes new technology for down-to-earth problems using numerous examples performed with our state-of-the-art simulator, one that is available separately at affordable cost and requiring only simple Intel Core i5 computers without specialized graphics boards. The new methods are rigorous, validated and well-documented and are now available for broad petroleum industry application.
weitere Ausgaben werden ermittelt
Wilson C. Chin earned his Ph.D. from M.I.T. and his M.Sc. from Caltech. He has published fifteen books describing his original research in reservoir engineering, formation testing, managed pressure drilling, wave propagation, Measurement While Drilling (MWD) and electromagnetic well logging, over one hundred papers and three dozen patents. Mr. Chin has consulted for well known domestic and international oil and gas corporations, and during the past two decades, won five prestigious research contracts and awards in petroleum exploration and production with the United States Department of Energy.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Contents [Seite 7]
5 - Preface [Seite 11]
6 - Acknowledgements [Seite 15]
7 - 1 Reservoir Modeling - Background and Overview [Seite 17]
7.1 - Overview [Seite 17]
7.1.1 - Reservoir modeling landscape [Seite 17]
7.1.2 - Reflections on simulation and modeling [Seite 18]
7.2 - Reservoir Flow Algorithms for Petroleum Engineers [Seite 19]
7.3 - MultisimTM Features - Advanced Interactive Reservoir Modeling [Seite 24]
7.3.1 - Reservoir Description [Seite 25]
7.3.2 - Well System Modeling [Seite 25]
7.3.3 - Additional Simulator Features [Seite 25]
7.4 - Simple Wells to Multilateral Systems for Laymen [Seite 26]
7.5 - Advanced Graphics for Color Display [Seite 33]
7.6 - Tracer Movement in Three-Dimensional Reservoirs [Seite 37]
8 - 2 Mathematical Modeling Ideas, Numerical Methods and Software [Seite 41]
8.1 - Overview and Background [Seite 41]
8.1.1 - Formulation errors [Seite 41]
8.1.2 - I/O problems [Seite 42]
8.2 - Fundamental Issues and Problems [Seite 42]
8.2.1 - Numerical stability [Seite 43]
8.2.2 - Inadequacies of the von Neumann test [Seite 44]
8.2.3 - Convergence [Seite 44]
8.2.4 - Physical resolution [Seite 45]
8.2.5 - Direct solvers [Seite 45]
8.2.6 - Modern simulation requirements [Seite 46]
8.2.7 - Pressure constraints [Seite 48]
8.2.8 - Flow rate constraints [Seite 48]
8.2.9 - Object-oriented geobodies [Seite 49]
8.2.10 - Plan for remaining sections [Seite 49]
8.3 - Governing Equations and Numerical Formulation [Seite 49]
8.3.1 - Steady flows of liquids [Seite 49]
8.3.2 - Difference equation formulation [Seite 50]
8.3.3 - The iterative scheme [Seite 51]
8.3.4 - Modeling well constraints for liquids [Seite 52]
8.3.5 - Steady and unsteady nonlinear gas flows [Seite 54]
8.3.6 - Steady gas flows [Seite 55]
8.3.7 - Well constraints for gas flows [Seite 56]
8.3.8 - Transient, compressible flows [Seite 58]
8.3.9 - Compaction, consolidation and subsidence [Seite 60]
8.3.10 - Boundary conforming grids [Seite 61]
8.3.11 - Stratigraphic meshes for layered media [Seite 62]
8.3.12 - Modeling wellbore storage [Seite 63]
8.4 - Early 1990s Validation Calculations [Seite 64]
8.4.1 - Simulation capabilities [Seite 64]
8.4.2 - Data structures and programming [Seite 65]
8.5 - Example 2-1. Convergence acceleration, two deviated horizontal gas wells in a channel sand [Seite 65]
8.6 - Example 2-2. Dual-lateral horizontal completion in a fractured, dipping, heterogeneous, layered formation [Seite 69]
8.7 - Example 2-3. Stratigraphic grids, drilling dome-shaped structures [Seite 72]
8.8 - Example 2-4. Simulating-while-drilling horizontal gas wells through a dome-shaped reservoir [Seite 74]
8.9 - Example 2-5. Modeling wellbore storage effects and compressible borehole flow transients [Seite 80]
8.9.1 - Run 1. Production well, no wellbore storage effects [Seite 81]
8.9.2 - Run 2. Production well, with some wellbore storage effects [Seite 84]
8.9.3 - Run 3. Production well, with more wellbore storage effects [Seite 85]
8.9.4 - Run 4. Injector well, without wellbore storage effects [Seite 85]
8.9.5 - Run 5. Injector well, with wellbore storage effects [Seite 85]
9 - 3 Simulation Capabilities - User Interface with Basic Well [Seite 87]
9.1 - Example 3-1. Single vertical well, user interface and menu structure for steady flow [Seite 87]
9.2 - Example 3-2. Volume flow rate constraint at a well [Seite 107]
9.3 - Example 3-3. Pressure constraint and transient shut-in [Seite 110]
9.4 - Example 3-4. Heterogeneities, anisotropy and multiple wells [Seite 126]
9.5 - Example 3-5. Reversing well constraints - consistency check [Seite 144]
9.6 - Example 3-6. Changing farfield boundary conditions [Seite 147]
9.7 - Example 3-7. Fluid depletion in a sealed reservoir [Seite 151]
9.8 - Example 3-8. Depletion in rate constrained well in sealed reservoir [Seite 163]
9.9 - Example 3-9. Steady flow from five spot pattern [Seite 164]
9.10 - Example 3-10. Drilling additional wells while simulating [Seite 169]
10 - 4 Vertical, Deviated, Horizontal and Multilateral Well Systems [Seite 191]
10.1 - Overview [Seite 191]
10.2 - Example 4-1. Multilateral and Vertical Wells in Multilayer Media [Seite 192]
10.3 - Example 4-2. Dual lateral with transient operations [Seite 220]
10.4 - Example 4-3. Producer and injector conversions [Seite 255]
10.5 - Example 4-4. Production with top and bottom drives [Seite 281]
10.6 - Example 4-5. Transient gas production from dual horizontal with wellbore storage effects [Seite 291]
11 - 5 Well Models and Productivity Indexes [Seite 306]
11.1 - Radial vs 3D modeling loss of wellbore resolution [Seite 306]
11.2 - Analogies in computational aerodynamics [Seite 307]
11.3 - Curvilinear grids in reservoir simulation [Seite 309]
11.4 - Productivity index modeling [Seite 311]
12 - References [Seite 312]
13 - Index [Seite 324]
14 - About the Author [Seite 328]
14.1 - Professional interests [Seite 328]
14.2 - Scientific book publications [Seite 329]
14.3 - United States patents [Seite 330]
14.4 - Recent patent applications [Seite 331]
14.5 - International and domestic patents [Seite 331]
14.6 - Journal articles and conference publications [Seite 334]
15 - MultisimTM Software Order [Seite 342]
15.1 - Features [Seite 342]
15.2 - Licensing options [Seite 343]
15.3 - Disclaimer [Seite 344]
16 - EULA [Seite 353]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

180,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen