Modern Borehole Analytics

Annular Flow, Hole Cleaning, and Pressure Control
 
 
Standards Information Network (Verlag)
  • erschienen am 12. Oktober 2017
  • |
  • 444 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-28403-1 (ISBN)
 
Wilson C. Chin has written some of the most important and well-known books in the petroleum industry. These books, whose research was funded by the U.S. Department of Energy and several international petroleum corporations, have set very high standards. Many algorithms are used at leading oil service companies to support key drilling and well logging applications.
For the first time, the physical models in these publications, founded on rigorous mathematics and numerical methods, are now available to the broader industry: students, petroleum engineers, drillers and faculty researchers. The presentations are written in easy-to-understand language, with few equations, offering simplified explanations of difficult problems and solutions which provide key insights into downhole physical phenomena through detailed tabulations and color graphics displays. Practical applications, such as cuttings transport, pressure control, mudcake integrity, formation effects in unconventional applications, and so on, are addressed in great detail, offering the most practical answers to everyday problems that the engineer encounters.
The book does not stop at annular flow. In fact, the important role of mudcake growth and thickness in enabling steady flow in the annulus is considered, as is the role of (low) formation permeability in affecting mud filtration, cake growth, and fluid sealing at the sandface. This is the first publication addressing "the big picture," a "first" drawn from the author's related research in multiple disciplines such as drilling rheology, formation testing and reservoir simulation. A must-have for any petroleum engineer, petroleum professional, or student, this book is truly a groundbreaking volume that is sure to set new standards for the industry.
1. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 25,79 MB
978-1-119-28403-1 (9781119284031)
1119284031 (1119284031)
weitere Ausgaben werden ermittelt
Wilson C. Chin earned his Ph.D. at the Massachusetts Institute of Technology and his M.Sc. at the California Institute of Technology. He has authored eighteen books in managed pressure drilling, formation testing, reservoir engineering, electromagnetic logging, Measurement While Drilling and wave propagation, in addition to over one hundred papers in computational mechanics and more than four dozen patents in petroleum well logging.standards for the industry.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Contents [Seite 7]
5 - Preface [Seite 13]
6 - Acknowledgements [Seite 15]
7 - 1 Fundamental Ideas and Background [Seite 17]
7.1 - 1.1 Background, industry challenges and frustrations [Seite 18]
7.1.1 - 1.1.1 Annular flow modeling issues and problem definition [Seite 19]
7.1.2 - 1.1.2 Mudcake growth, dynamic coupling and reservoir interaction [Seite 23]
7.2 - 1.2 Related prior work [Seite 24]
7.3 - 1.3 References [Seite 29]
8 - 2 Steady Annular Flow [Seite 30]
8.1 - 2.1 Graphical interface basics [Seite 31]
8.2 - 2.2 Steady flows - versatile capabilities [Seite 36]
8.2.1 - 2.2.1 Concentric Newtonian annular flow [Seite 36]
8.2.2 - 2.2.2 Concentric Newtonian flow on coarse mesh [Seite 47]
8.2.3 - 2.2.3 Coarse mesh Newtonian flow with cuttings bed and washout [Seite 49]
8.2.4 - 2.2.4 Eccentricity effects, pressure gradient fixed [Seite 79]
8.2.4.1 - 2.2.4.1 Eccentricity = 0.000 for annulus [Seite 80]
8.2.4.2 - 2.2.4.2 Eccentricity = 0.333 for annulus [Seite 81]
8.2.4.3 - 2.2.4.3 Eccentricity = 0.500 for annulus [Seite 82]
8.2.4.4 - 2.2.4.4 Eccentricity = 0.667 for annulus [Seite 83]
8.2.4.5 - 2.2.4.5 Eccentricity = 0.833 for annulus [Seite 84]
8.2.5 - 2.2.5 Eccentricity = 0.833 for annulus, volume flow rate specified [Seite 88]
8.2.6 - 2.2.6 Eccentricity = 0.833 for annulus, pressure gradient specified, yield stress allowed [Seite 95]
8.2.7 - 2.2.7 Non-Newtonian effects pressure gradient versus flow rate curve, no yield stress [Seite 102]
8.2.8 - 2.2.8 Non-Newtonian effects, pressure gradient versus flow rate curve, non-zero yield stress [Seite 111]
8.2.9 - 2.2.9 Power law fluid in eccentric annulus, effect of pipe or casing speed [Seite 115]
8.2.10 - 2.2.10 Steady-state swab-surge in eccentric annuli for Power law fluids with and without circulation (no rotation) [Seite 118]
8.2.11 - 2.2.11 Steady-state swab-surge in concentric annuli for Power law fluids with drillpipe rotation but small pipe movement [Seite 131]
8.2.12 - 2.2.12 Steady-state swab-surge in eccentric annuli for Herschel-Bulkley fluids with drillpipe rotation and axial movement [Seite 133]
8.2.13 - 2.2.13 Transient swab-surge on a steady-state basis [Seite 148]
8.2.14 - 2.2.14 Equivalent circulating density (ECD) calculations [Seite 149]
8.3 - 2.3 References [Seite 149]
9 - 3 Transient Single-Phase Flows [Seite 151]
9.1 - 3.1 Validation runs, three different approaches to steady, Power law, non-rotating, concentric annular flow [Seite 152]
9.2 - 3.2 Validation run for transient, Newtonian, non-rotating, concentric annular flow [Seite 154]
9.3 - 3.3 Validation run for transient, Newtonian, non-rotating, eccentric annular flow [Seite 157]
9.4 - 3.4 effect of steady rotation for laminar Power law flows in concentric annuli [Seite 158]
9.5 - 3.5 effect of steady-state rotation for Newtonian fluid flow in eccentric annuli [Seite 162]
9.6 - 3.6 effect of steady rotation for Power law flows in highly eccentric annuli at low densities (foams) [Seite 165]
9.7 - 3.7 effect of steady rotation for Power law flows in highly eccentric annuli at high densities (heavy muds) [Seite 168]
9.8 - 3.8 effect of mud pump ramp-up and ramp-down flow rate under non-rotating and rotating conditions [Seite 171]
9.9 - 3.9 effect of rotational and azimuthal start-up [Seite 174]
9.10 - 3.10 effect of axial drillstring movement [Seite 178]
9.11 - 3.11 Combined rotation and sinusoidal reciprocation [Seite 181]
9.12 - 3.12 Combined rotation and sinusoidal reciprocation in presence of mud pump flow rate ramp-up for yield stress fluid [Seite 183]
9.13 - 3.13 References [Seite 185]
10 - 4 Transient Multiphase Flows [Seite 187]
10.1 - 4.1 Single fluid in pipe and borehole system - calculating total pressure drops for general non-Newtonian fluids [Seite 189]
10.2 - 4.2 Interface tracking and total pressure drop for multiple fluids pumped in drillpipe and eccentric borehole system [Seite 190]
10.3 - 4.3 Calculating annular and drillpipe pressure loss [Seite 215]
10.4 - 4.4 Herschel-Bulkley pipe flow analysis [Seite 223]
10.5 - 4.5 Transient, three-dimensional, eccentric multiphase flow analysis for non-rotating Newtonian fluids [Seite 226]
10.6 - 4.6 Transient, 3D, eccentric multiphase analysis for non-rotating Newtonian fluids - simulator description [Seite 232]
10.7 - 4.7 Transient, 3D, eccentric multiphase analysis for general rotating non-Newtonian fluids - simulator description [Seite 241]
10.8 - 4.8 Transient, 3D, eccentric, multiphase analysis for general rotating non-Newtonian fluids with axial pipe movement - Validation runs for completely stationary pipe [Seite 243]
10.9 - 4.9 Transient, 3D, concentric, multiphase analysis for rotating Power law fluids without axial pipe movement [Seite 260]
10.10 - 4.10 Transient, 3D, eccentric, multiphase analysis for general rotating non-Newtonian fluids with axial pipe movement - Validation runs for constant rate rotation and translation [Seite 264]
10.11 - 4.11 References [Seite 272]
11 - 5 Mudcake Formation in Single-Phase Flow [Seite 275]
11.1 - 5.1 Flows with moving boundaries - four basic problems [Seite 276]
11.1.1 - 5.1.1 Linear mudcake buildup on filter paper [Seite 279]
11.1.2 - 5.1.2 Plug flow of two liquids in linear core without cake [Seite 282]
11.1.3 - 5.1.3 Simultaneous mudcake buildup and filtrate invasion in a linear core (liquid flows) [Seite 284]
11.1.4 - 5.1.4 Simultaneous mudcake buildup and filtrate invasion in a radial geometry (liquid flows) [Seite 287]
11.2 - 5.2 Characterizing mud and mudcake properties [Seite 293]
11.2.1 - 5.2.1 Simple extrapolation of mudcake properties [Seite 294]
11.2.2 - 5.2.2 Radial mudcake growth on cylindrical filter paper [Seite 295]
11.3 - 5.3 Complex invasion problems - numerical modeling [Seite 299]
11.3.1 - 5.3.1 Finite difference modeling [Seite 299]
11.3.2 - 5.3.2 Invasion and mudcake growth examples [Seite 304]
11.3.2.1 - 5.3.2.1 Lineal liquid displacement without mudcake [Seite 304]
11.3.2.2 - 5.3.2.2 Cylindrical radial liquid displacement without cake [Seite 310]
11.3.2.3 - 5.3.2.3 Spherical radial liquid displacement without cake [Seite 314]
11.3.2.4 - 5.3.2.4 Simultaneous mudcake buildup and displacement front motion for incompressible liquid flows [Seite 316]
11.4 - 5.4 References [Seite 326]
12 - 6 Mudcake Growth for Multiphase Flow [Seite 327]
12.1 - 6.1 Physical problem description [Seite 328]
12.2 - 6.2 Overview physics and simulation capabilities [Seite 332]
12.2.1 - 6.2.1 Example 1, Single probe, infinite anisotropic media [Seite 332]
12.2.2 - 6.2.2 Example 2, Single probe, three layer medium [Seite 336]
12.2.3 - 6.2.3 Example 3, Dual probe pumping, three layer medium [Seite 338]
12.2.4 - 6.2.4 Example 4, Straddle packer pumping [Seite 339]
12.3 - 6.3 Model and user interface notes [Seite 341]
12.4 - 6.4 Detailed applications [Seite 344]
12.4.1 - 6.4.1 Run No. 1, Clean-up, single-probe, uniform medium [Seite 344]
12.4.2 - 6.4.2 Run No. 2, A low-permeability "supercharging" example [Seite 350]
12.4.3 - 6.4.3 Run No. 3, A three-layer simulation [Seite 352]
12.5 - 6.5 References [Seite 355]
13 - 7 Pore Pressure in Higher Mobility Formations [Seite 356]
13.1 - 7.1 Forward and inverse modeling approaches [Seite 357]
13.2 - 7.2 Preliminary ideas [Seite 358]
13.2.1 - 7.2.1 Qualitative effects of storage and skin [Seite 358]
13.2.2 - 7.2.2 The simplest inverse model - steady pressure drop for arbitrary dip angles [Seite 359]
13.2.3 - 7.2.3 FT-00 and FT-01 [Seite 362]
13.3 - 7. 3 Inverse examples - dip angle, multivalued solutions and skin [Seite 363]
13.3.1 - 7.3.1 Forward model FT-00 [Seite 363]
13.3.2 - 7.3.2 Inverse model FT-01 - multivalued solutions [Seite 365]
13.3.3 - 7.3.3 Effects of dip angle - detailed calculations [Seite 368]
13.3.4 - 7.3.4 Pulse interaction method - an introduction [Seite 371]
13.4 - 7.4 References [Seite 374]
14 - 8 Pore Pressure Prediction in Low Mobility or Tight Formations [Seite 375]
14.1 - 8.1 Low permeability pulse interference testing - nonzero skin [Seite 376]
14.2 - 8.2 Low permeability pulse interference testing - zero skin [Seite 381]
14.3 - 8.3 Formation Testing While Drilling (FTWD) [Seite 388]
14.3.1 - 8.3.1 Pressure transient drawdown-buildup approach [Seite 388]
14.3.2 - 8.3.2 Interpretation in low mobility, high flowline storage environments [Seite 388]
14.3.3 - 8.3.3 Multiple pretests, modeling and interpretation [Seite 391]
14.3.4 - 8.3.4 Reverse flow injection processes [Seite 394]
14.3.4.1 - 8.3.4.1 Conventional fluid withdrawal, drawdown-then-buildup [Seite 395]
14.3.4.2 - 8.3.4.2 Reverse flow injection process, buildup-then-drawdown [Seite 399]
14.4 - 8.4 References [Seite 404]
15 - Cumulative References [Seite 405]
16 - Index [Seite 428]
17 - About the Author [Seite 434]
18 - EULA [Seite 446]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

168,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok