Coulson and Richardson's Chemical Engineering

Volume 1A: Fluid Flow: Fundamentals and Applications
 
 
Butterworth-Heinemann (Verlag)
  • 7. Auflage
  • |
  • erschienen am 28. November 2017
  • |
  • 570 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-809746-5 (ISBN)
 

Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic.

Coulson and Richardson's Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers.

  • Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers
  • Includes reference material converted from textbooks
  • Explores topics, from foundational through technical
  • Includes emerging applications, numerical methods, and computational tools
  • Englisch
  • Saint Louis
  • |
  • Großbritannien
Elsevier Science
  • 25,85 MB
978-0-12-809746-5 (9780128097465)
0128097469 (0128097469)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Coulson and Richardson's Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications
  • Copyright
  • Contents
  • About Professor Coulson
  • About Professor Richardson
  • Preface to Seventh Edition
  • Preface to Sixth Edition
  • Preface to Fifth Edition
  • Preface to Fourth Edition
  • Preface to Third Edition
  • Preface to Second Edition
  • Preface to First Edition
  • Acknowledgements
  • Introduction
  • Chapter 1: Units and Dimensions
  • 1.1. Introduction
  • 1.2. Systems of Units
  • 1.2.1. The Centimetre-Gram-Second (cgs) System
  • 1.2.2. The Metre-Kilogram-Second (mks) System and the Système International d'Unités (SI)
  • 1.2.3. The Foot-Pound-Second (fps) System
  • 1.2.4. The British Engineering System
  • 1.2.5. Noncoherent System Employing Pound Mass and Pound Force Simultaneously
  • 1.2.6. Derived Units
  • 1.2.7. Thermal (Heat) Units
  • 1.2.8. Molar Units
  • 1.2.9. Electrical Units
  • 1.3. Conversion of Units
  • 1.4. Dimensional Analysis
  • 1.5. Buckingham's Pi Theorem
  • 1.6. Scale Up
  • 1.7. Redefinition of the Length and Mass Dimensions
  • 1.7.1. Vector and Scalar Quantities
  • 1.7.2. Quantity Mass and Inertia Mass
  • Warning
  • 1.8. Nomenclature
  • References
  • Further reading
  • Chapter 2: Flow of Fluids-Energy and Momentum Relationships
  • 2.1. Introduction
  • 2.2. Internal Energy
  • 2.3. Types of Fluid
  • 2.3.1. The Incompressible Fluid (Liquid)
  • 2.3.2. The Ideal Gas
  • Isothermal processes
  • Isentropic processes
  • 2.3.3. The Nonideal Gas
  • Joule-Thomson effect
  • 2.4. The Fluid in Motion
  • 2.4.1. Continuity
  • 2.4.2. Momentum Changes in a Fluid
  • Water hammer
  • 2.4.3. Energy of a Fluid in Motion
  • Internal energy U
  • Pressure energy
  • Potential energy
  • Kinetic energy
  • 2.4.4. Pressure and Fluid Head
  • 2.4.5. Constant Flow Per Unit Area
  • 2.4.6. Separation
  • 2.5. Pressure-Volume Relationships
  • 2.5.1. Incompressible Fluids
  • 2.5.2. Compressible Fluids
  • Isothermal process
  • Isentropic process
  • Reversible process-Neither isothermal nor adiabatic
  • Irreversible process
  • 2.6. Rotational or Vortex Motion in a Fluid
  • 2.6.1. The Forced Vortex
  • Application of the forced vortex-The centrifuge
  • 2.6.2. The Free Vortex
  • 2.7. Nomenclature
  • References
  • Further Reading
  • Chapter 3: Flow of liquids in Pipes and Open Channels
  • 3.1. Introduction
  • 3.2. The Nature of Fluid Flow
  • 3.2.1. Flow Over a Surface
  • 3.2.2. Flow in a Pipe
  • 3.3. Newtonian Fluids
  • 3.3.1. Shearing Characteristics of a Newtonian Fluid
  • 3.3.2. Pressure Drop for Flow of Newtonian Liquids Through a Pipe
  • Shear stress in fluid
  • Resistance to flow in pipes
  • Calculation of pressure drop for liquid flowing in a pipe
  • Effect of roughness of pipe surfaces
  • 3.3.3. Reynolds Number and Shear Stress
  • 3.3.4. Velocity Distributions and Volumetric Flowrates for Streamline Flow
  • Pipe of circular cross-section
  • Volumetric rate of flow and average velocity
  • Kinetic energy of fluid
  • Flow between two parallel plates
  • Flow through an annulus
  • 3.3.5. The Transition From Laminar to Turbulent Flow in a Pipe
  • 3.3.6. Velocity Distributions and Volumetric Flowrates for Turbulent Flow
  • Pipe of circular cross-section
  • Mean velocity
  • Kinetic energy
  • Noncircular ducts
  • 3.3.7. Flow Through Curved Pipes
  • 3.3.8. Miscellaneous Friction Losses
  • Sudden enlargement
  • Sudden contraction
  • Pipe fittings
  • 3.3.9. Flow Over Banks of Tubes
  • 3.3.10. Flow With a Free Surface
  • Laminar flow down an inclined surface
  • Flow in open channels
  • Uniform flow
  • Specific energy of liquid
  • Velocity of transmission of a wave
  • Hydraulic jump
  • 3.4. Non-Newtonian Fluids
  • 3.4.1. Steady-State Shear-Dependent Behaviour
  • 3.4.2. Time-Dependent Behaviour
  • 3.4.3. Viscoelastic Behaviour
  • 3.4.4. Characterisation of Non-Newtonian Fluids
  • 3.4.5. Dimensionless Characterisation of Viscoelastic Flows
  • 3.4.6. Relation Between Rheology and Structure of Material
  • 3.4.7. Streamline Flow in Pipes and Channels of Regular Geometry
  • Power-law fluids
  • Bingham-plastic fluids
  • Flow in the annular region (s>rc)
  • Flow in the centre plug
  • Total flow through the pipe
  • General equations for pipeline flow
  • Use of parameters n' and k'
  • Generalised Reynolds number
  • Velocity-pressure gradient relationships for fluids of specified rheology
  • 3.4.8. Turbulent flow
  • 3.4.9. The Transition From Laminar to Turbulent Flow
  • 3.5. Nomenclature
  • References
  • Further Reading
  • Chapter 4: Flow of Compressible Fluids
  • 4.1. Introduction
  • 4.2. Flow of Gas Through a Nozzle or Orifice
  • 4.2.1. Isothermal Flow
  • Maximum flow conditions
  • 4.2.2. Nonisothermal Flow
  • Maximum flow conditions
  • 4.3. Velocity of Propagation of a Pressure Wave
  • 4.4. Converging-Diverging Nozzles for Gas Flow
  • 4.4.1. Maximum Flow and Critical Pressure Ratio
  • 4.4.2. The Pressure and Area for Flow
  • 4.4.3. Effect of Backpressure on Flow in Nozzle
  • 4.5. Flow in a Pipe
  • 4.5.1. Energy Balance for Flow of Ideal Gas
  • 4.5.2. Isothermal Flow of an Ideal Gas in a Horizontal Pipe
  • Maximum flow conditions
  • Flow with fixed upstream pressure and variable downstream pressure
  • Heat flow required to maintain isothermal conditions
  • 4.5.3. Nonisothermal Flow of an Ideal Gas in a Horizontal Pipe
  • 4.5.4. Adiabatic Flow of an Ideal Gas in a Horizontal Pipe
  • Analysis of conditions for maximum flow
  • 4.5.5. Flow of Nonideal Gases
  • 4.6. Shock Waves
  • 4.7. Nomenclature
  • References
  • Further Reading
  • Chapter 5: Flow of Multiphase Mixtures
  • 5.1. Introduction
  • 5.2. Two-Phase Gas (Vapour)-Liquid Flow
  • 5.2.1. Introduction
  • 5.2.2. Flow Regimes and Flow Patterns
  • Horizontal flow
  • Vertical flow
  • 5.2.3. Hold-Up
  • 5.2.4. Pressure, Momentum, and Energy Relations
  • Practical methods for evaluating pressure drop
  • Critical flow
  • Non-Newtonian flow
  • 5.2.5. Erosion
  • 5.3. Flow of Liquid-Liquid Mixtures
  • 5.3.1. Introduction
  • 5.3.2. Flow Patterns
  • 5.3.3. Average Holdup
  • 5.3.4. Pressure Gradient
  • 5.4. Flow of Solids-Liquid Mixtures
  • 5.4.1. Introduction
  • 5.4.2. Homogeneous Nonsettling Suspensions
  • 5.4.3. Coarse Solids
  • 5.4.4. Coarse Solids in Horizontal Flow
  • Hold-up and slip velocity
  • Predictive methods for pressure drop
  • The two-layer model
  • Transport of coarse particles in heavy and shear-thinning media
  • Transport of particles of low density
  • 5.4.5. Coarse Solids in Vertical Flow
  • 5.5. Flow of Gas-Solids Mixtures
  • 5.5.1. General Considerations
  • 5.5.2. Horizontal Transport
  • Flow patterns
  • Suspension mechanisms
  • Energy requirements for dilute phase conveying
  • Determination of solid velocities
  • Cross-correlation methods
  • Pressure drops and solid velocities for dilute phase flow
  • Electrostatic charging
  • Dense phase conveying
  • 5.5.3. Vertical Transport
  • 5.5.4. Practical Applications
  • 5.6. Nomenclature
  • References
  • Further Reading
  • Chapter 6: Flow and Pressure Measurement
  • 6.1. Introduction
  • 6.2. Fluid Pressure
  • 6.2.1. Static Pressure
  • 6.2.2. Pressure Measuring Devices
  • 6.2.3. Pressure Signal Transmission-The Differential Pressure Cell
  • 6.2.4. Intelligent Electronic Pressure Transmitters
  • 6.2.5. Impact Pressure
  • 6.3. Measurement of Fluid Flow
  • 6.3.1. The Pitot Tube
  • 6.3.2. Measurement by Flow Through a Constriction
  • 6.3.3. The Orifice Meter
  • 6.3.4. The Nozzle
  • 6.3.5. The Venturi Meter
  • 6.3.6. Pressure Recovery in Orifice-Type Meters
  • 6.3.7. Variable Area Meters-Rotameters
  • 6.3.8. The Notch or Weir
  • Rectangular notch
  • Triangular notch
  • 6.3.9. Other Methods of Measuring Flowrates
  • Hot-wire anemometer
  • The magnetic flowmeter
  • Vortex-shedding flowmeters
  • The time-of-flight ultrasonic flowmeter
  • The Doppler ultrasonic flowmeter
  • The Coriolis meter
  • Quantity meters
  • Gas meters
  • Liquid meters
  • 6.4. Nomenclature
  • References
  • Further Reading
  • Chapter 7: Liquid Mixing
  • 7.1. Introduction-Types of Mixing
  • 7.1.1. Single-Phase Liquid Mixing
  • 7.1.2. Mixing of Immiscible Liquids
  • 7.1.3. Gas-Liquid Mixing
  • 7.1.4. Liquid-Solids Mixing
  • 7.1.5. Gas-Liquid-Solids Mixing
  • 7.1.6. Solids-Solids Mixing
  • 7.1.7. Miscellaneous Mixing Applications
  • 7.2. Mixing Mechanisms
  • 7.2.1. Laminar Mixing
  • 7.2.2. Turbulent Mixing
  • 7.3. Scale-Up of Stirred Vessels
  • 7.4. Power Consumption in Stirred Vessels
  • 7.4.1. Low Viscosity Systems
  • 7.4.2. High Viscosity Systems
  • 7.5. Flow Patterns in Stirred Tanks
  • 7.6. Rate and Time for Mixing
  • 7.7. Mixing Equipment
  • 7.7.1. Mechanical Agitation
  • Vessels
  • Baffles
  • Impellers
  • Propellers
  • Shrouded turbines
  • Open impellers
  • 7.7.2. Portable Mixers
  • 7.7.3. Extruders
  • 7.7.4. Static Mixers
  • 7.7.5. Other Types of Mixer
  • 7.8. Mixing in Continuous Systems
  • 7.9. Nomenclature
  • References
  • Further Reading
  • Chapter 8: Pumping of Fluids
  • 8.1. Introduction
  • 8.2. Pumping Equipment for Liquids
  • 8.2.1. Reciprocating Pump
  • The piston pump
  • The plunger or ram pump
  • The diaphragm pump
  • The metering pump
  • 8.2.2. Positive-Displacement Rotary Pumps
  • The gear pump and the lobe pump
  • The cam pump
  • The vane pump
  • The flexible vane pump
  • The flow inducer or peristaltic pump
  • The mono pump
  • Screw pumps
  • 8.2.3. The Centrifugal Pump
  • Virtual head of a centrifugal pump
  • Specific speed
  • Criteria for similarity
  • Operating characteristics
  • Cavitation
  • Suction head
  • The advantages and disadvantages of the centrifugal pump
  • Pumping of non-Newtonian fluids
  • 8.3. Pumping Equipment for Gases
  • 8.3.1. Fans and Rotary Compressors
  • 8.3.2. Centrifugal and Turbocompressors
  • 8.3.3. The Reciprocating Piston Compressor
  • 8.3.4. Power Required for the Compression of Gases
  • Clearance volume
  • Multistage compressors
  • Compressor efficiencies
  • 8.4. The Use of Compressed Air for Pumping
  • 8.4.1. The Air-Lift Pump
  • Flow of a vertical column of aerated liquid
  • Operation of the air-lift pump
  • 8.5. Vacuum Pumps
  • 8.6. Power Requirements for Pumping Through Pipelines
  • 8.6.1. Liquids
  • Selection of pipe diameter
  • Effect of fluctuations in flowrate on power for pumping
  • Streamline flow
  • Turbulent flow
  • 8.6.2. Gases
  • 8.7. Effect of Minor Losses
  • 8.8. Nomenclature
  • References
  • Further Reading
  • Appendix
  • A.1. Tables of Physical Properties
  • A.2. Steam Tables
  • A.2. Steam Tables
  • A.3. Mathematical Tables
  • Problems
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

138,04 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok