Coulson and Richardson's Chemical Engineering

Volume 1B: Heat and Mass Transfer: Fundamentals and Applications
 
 
Butterworth-Heinemann (Verlag)
  • 7. Auflage
  • |
  • erschienen am 28. November 2017
  • |
  • 666 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-102551-2 (ISBN)
 

Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic.

Coulson and Richardson's Chemical Engineering: Volume 1B: Heat and Mass Transfer: Fundamentals and Applications, Seventh Edition, covers two of the main transport processes of interest to chemical engineers: heat transfer and mass transfer, and the relationships among them.

  • Covers two of the three main transport processes of interest to chemical engineers: heat transfer and mass transfer, and the relationships between them
  • Includes reference material converted from textbooks
  • Explores topics, from foundational through technical
  • Includes emerging applications, numerical methods, and computational tools
  • Englisch
  • San Diego
  • |
  • Großbritannien
Elsevier Science
  • 24,29 MB
978-0-08-102551-2 (9780081025512)
0081025513 (0081025513)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Coulson and Richardson's Chemical Engineering: Volume 1B: Heat and Mass Transfer: Fundamentals and Applications
  • Copyright
  • Contents
  • About Professor Coulson
  • About Professor Richardson
  • Preface to Seventh Edition
  • Preface to Sixth Edition
  • Preface to Fifth Edition
  • Preface to Fourth Edition
  • Preface to Third Edition
  • Preface to Second Edition
  • Preface to First Edition
  • Acknowledgements
  • Introduction
  • Part 1: Heat Transfer
  • Chapter 1: Heat Transfer
  • 1.1. Introduction
  • 1.2. Basic Considerations
  • 1.2.1. Individual and Overall Coefficients of Heat Transfer
  • 1.2.2. Mean Temperature Difference
  • 1.3. Heat Transfer by Conduction
  • 1.3.1. Conduction Through a Plane Wall
  • 1.3.2. Thermal Resistances in Series
  • 1.3.3. Conduction Through a Thick-Walled Tube
  • 1.3.4. Conduction Through a Spherical Shell and to a Particle
  • 1.3.5. Unsteady State Conduction
  • Basic considerations
  • Schmidt's method
  • Heating and cooling of solids and particles
  • Heating and melting of fine particles
  • 1.3.6. Conduction With Internal Heat Source
  • 1.3.7. Multidimensional Steady Conduction
  • Graphical method
  • Numerical method
  • 1.4. Heat Transfer by Convection
  • 1.4.1. Natural and Forced Convection
  • 1.4.2. Application of Dimensional Analysis to Convection
  • 1.4.3. Forced Convection in Tubes
  • Turbulent flow
  • Streamline flow
  • 1.4.4. Forced Convection Outside Tubes
  • Flow across single cylinders
  • Flow at right angles to tube bundles
  • 1.4.5. Flow in Noncircular Sections
  • Rectangular ducts
  • Annular sections between concentric tubes
  • Flow over flat plates
  • 1.4.6. Convection to Spherical Particles
  • 1.4.7. Natural Convection
  • Natural convection to air
  • Fluids between two surfaces
  • 1.5. Heat Transfer by Radiation
  • 1.5.1. Introduction
  • 1.5.2. Radiation From a Black Body
  • 1.5.3. Radiation From Real Surfaces
  • 1.5.4. Radiation Transfer Between Black Surfaces
  • 1.5.5. Radiation Transfer Between Grey Surfaces
  • Radiation between parallel plates
  • Radiation shield
  • Multisided enclosures
  • 1.5.6. Radiation From Gases
  • Radiation from gases containing suspended particles
  • 1.6. Heat Transfer in the Condensation of Vapours
  • 1.6.1. Film Coefficients for Vertical and Inclined Surfaces
  • 1.6.2. Condensation on Vertical and Horizontal Tubes
  • The Nusselt equation
  • Experimental results
  • Influence of vapour velocity
  • Turbulence in the film
  • 1.6.3. Dropwise Condensation
  • 1.6.4. Condensation of Mixed Vapours
  • 1.7. Boiling Liquids
  • 1.7.1. Conditions for Boiling
  • 1.7.2. Types of Boiling
  • Interface evaporation
  • Nucleate boiling
  • Film boiling
  • 1.7.3. Heat Transfer Coefficients and Heat Flux
  • Effect of temperature difference
  • Effect of pressure
  • 1.7.4. Analysis Based on Bubble Characteristics
  • 1.7.5. Subcooled Boiling
  • 1.7.6. Design Considerations
  • 1.8. Heat Transfer in Reaction Vessels
  • 1.8.1. Helical Cooling Coils
  • Inside film coefficient
  • Outside film coefficient
  • 1.8.2. Jacketed Vessels
  • 1.8.3. Time Required for Heating or Cooling
  • 1.9. Shell and Tube Heat Exchangers
  • 1.9.1. General Description
  • 1.9.2. Basic Components
  • 1.9.3. Mean Temperature Difference in Multipass Exchangers
  • 1.9.4. Film Coefficients
  • Practical values
  • Correlated data
  • 1.9.5. Pressure Drop in Heat Exchangers
  • Tube-side
  • Shell-side
  • 1.9.6. Heat Exchanger Design
  • Process conditions
  • Design methods
  • Tube-side coefficient
  • Shell-side coefficient
  • Overall coefficient
  • Pressure drop
  • 1.9.7. Heat Exchanger Performance
  • 1.9.8. Transfer Units
  • 1.10. Other Forms of Equipment
  • 1.10.1. Finned-Tube Units
  • Film coefficients
  • Practical data
  • 1.10.2. Plate-Type Exchangers
  • 1.10.3. Spiral Heat Exchangers
  • 1.10.4. Compact Heat Exchangers
  • Advantages of compact units
  • Plate and fin exchangers
  • Printed-circuit exchangers
  • 1.10.5. Scraped-Surface Heat Exchangers
  • 1.11. Thermal Insulation
  • 1.11.1. Heat Losses Through Lagging
  • 1.11.2. Economic Thickness of Lagging
  • 1.11.3. Critical Thickness of Lagging
  • 1.12. Nomenclature
  • References
  • Further Reading
  • Part 2: Mass Transfer
  • Chapter 2: Mass Transfer
  • 2.1. Introduction
  • 2.2. Diffusion in Binary Gas Mixtures
  • 2.2.1. Properties of Binary Mixtures
  • 2.2.2. Equimolecular Counterdiffusion
  • 2.2.3. Mass Transfer Through A Stationary Second Component
  • 2.2.4. Diffusivities of Gases and Vapours
  • Experimental determination of diffusivities
  • Prediction of diffusivities
  • 2.2.5. Mass Transfer Velocities
  • 2.2.6. General Case for Gas-Phase Mass Transfer in a Binary Mixture
  • 2.2.7. Diffusion as a Mass Flux
  • 2.2.8. Thermal Diffusion
  • 2.2.9. Unsteady-State Mass Transfer
  • Equimolecular counterdiffusion
  • Gas absorption
  • 2.3. Multicomponent Gas-Phase Systems
  • 2.3.1. Molar Flux in Terms of Effective Diffusivity
  • 2.3.2. Maxwell's Law of Diffusion
  • Maxwell's law for a binary system
  • Equimolecular counterdiffusion
  • Transfer of A through stationary B
  • Maxwell's law for multicomponent mass transfer
  • 2.4. Diffusion in Liquids
  • 2.4.1. Liquid Phase Diffusivities
  • 2.5. Mass Transfer Across a Phase Boundary
  • 2.5.1. The Two-Film Theory
  • 2.5.2. The Penetration Theory
  • Regular surface renewal
  • Random surface renewal
  • Varying interface composition
  • Penetration model with laminar film at interface
  • 2.5.3. The Film-Penetration Theory
  • 2.5.4. Mass Transfer to a Sphere in a Homogenous Fluid
  • 2.5.5. Other Theories of Mass Transfer
  • 2.5.6. Interfacial Turbulence
  • 2.5.7. Mass Transfer Coefficients
  • 2.5.8. Countercurrent Mass Transfer and Transfer Units
  • Stagewise Processes
  • Continuous differential contact processes
  • 2.6. Mass Transfer and Chemical Reaction in a Continuous Phase
  • 2.6.1. Steady-State Process
  • First-order reaction
  • nth-order reaction
  • Second-order reaction (n=2)
  • 2.6.2. Unsteady-State Process
  • 2.7. Mass Transfer and Chemical Reaction in a Catalyst Pellet
  • 2.7.1. Flat Platelets
  • 2.7.2. Spherical Pellets
  • 2.7.3. Other Particle Shapes
  • 2.7.4. Mass Transfer and Chemical Reaction With a Mass Transfer Resistance External to the Pellet
  • 2.8. Taylor-Aris Dispersion
  • 2.9. Practical Studies of Mass Transfer
  • 2.9.1. The j-Factor of Chilton and Colburn for Flow in Tubes
  • Heat transfer
  • Mass transfer
  • 2.9.2. Mass Transfer at Plane Surfaces
  • 2.9.3. Effect of Surface Roughness and Form Drag
  • 2.9.4. Mass Transfer From a Fluid to the Surface of Particles
  • Mass transfer to single particles
  • Mass transfer to particles in a fixed or fluidised bed
  • 2.10. Nomenclature
  • References
  • Further Reading
  • Part 3: Momentum, Heat and Mass Transfer
  • Chapter 3: The Boundary Layer
  • 3.1. Introduction
  • 3.2. The Momentum Equation
  • 3.2.1. Steady-State Momentum Balance Over the Element 1-2-3-4
  • 3.3. The Streamline Portion of the Boundary Layer
  • 3.3.1. Shear Stress at the Surface
  • 3.4. The Turbulent Boundary Layer
  • 3.4.1. The Turbulent Portion
  • 3.4.2. The Laminar Sublayer
  • 3.5. Boundary Layer Theory Applied to Pipe Flow
  • 3.5.1. Entry Conditions
  • 3.5.2. Application of the Boundary-Layer Theory
  • 3.6. The Boundary Layer for Heat Transfer
  • 3.6.1. Introduction
  • 3.6.2. The Heat Balance
  • 3.6.3. Heat Transfer for Streamline Flow Over a Plane Surface-Constant Surface Temperature
  • 3.6.4. Heat Transfer for Streamline Flow Over a Plane Surface-Constant Surface Heat Flux
  • 3.7. The Boundary Layer for Mass Transfer
  • 3.8. Nomenclature
  • References
  • Further Reading
  • Chapter 4: Quantitative Relations Between Transfer Processes
  • 4.1. Introduction
  • 4.2. Transfer by Molecular Diffusion
  • 4.2.1. Momentum Transfer
  • 4.2.2. Heat Transfer
  • 4.2.3. Mass Transfer
  • 4.2.4. Viscosity
  • 4.2.5. Thermal Conductivity
  • 4.2.6. Diffusivity
  • 4.3. Eddy Transfer
  • 4.3.1. The Nature of Turbulent Flow
  • 4.3.2. Mixing Length and Eddy Kinematic Viscosity
  • 4.4. Universal Velocity Profile
  • 4.4.1. The Turbulent Core
  • 4.4.2. The Laminar Sublayer
  • 4.4.3. The Buffer Layer
  • 4.4.4. Velocity Profile for All Regions
  • 4.4.5. Velocity Gradients
  • 4.4.6. Laminar Sublayer and Buffer Layer Thicknesses
  • 4.4.7. Variation of Eddy Kinematic Viscosity
  • 4.4.8. Approximate Form of Velocity Profile in Turbulent Region
  • 4.4.9. Effect of Curvature of Pipe Wall on Shear Stress
  • 4.5. Friction Factor for a Smooth Pipe
  • 4.6. Effect of Surface Roughness on Shear Stress
  • 4.7. Simultaneous Momentum, Heat and Mass Transfer
  • 4.7.1. Mass Transfer
  • 4.7.2. Heat Transfer
  • 4.8. Reynolds Analogy
  • 4.8.1. Simple Form of Analogy Between Momentum, Heat and Mass Transfer
  • 4.8.2. Mass Transfer With Bulk Flow
  • 4.8.3. Taylor-Prandtl Modification of Reynolds Analogy for Heat Transfer and Mass Transfer
  • 4.8.4. Use of Universal Velocity Profile in Reynolds Analogy
  • 4.8.4.1. Laminar sublayer (030)
  • 4.8.5. Flow Over a Plane Surface
  • 4.8.6. Flow in a Pipe
  • 4.9. Nomenclature
  • References
  • Further Reading
  • Chapter 5: Applications in Humidification and Water Cooling
  • 5.1. Introduction
  • 5.2. Humidification Terms
  • 5.2.1. Definitions
  • 5.2.2. Wet-Bulb Temperature
  • 5.2.3. Adiabatic Saturation Temperature
  • 5.3. Humidity Data for the Air-Water System
  • 5.3.1. Temperature-Humidity Chart
  • 5.3.2. Enthalpy-Humidity Chart
  • Mixing of two streams of humid gas
  • Addition of liquid or vapour to a gas
  • 5.4. Determination of Humidity
  • 5.5. Humidification and Dehumidification
  • 5.5.1. Methods of Increasing Humidity
  • 5.5.2. Dehumidification
  • 5.6. Water Cooling
  • 5.6.1. Cooling Towers
  • 5.6.2. Design of Natural-Draught Towers
  • 5.6.3. Height of Packing for Both Natural and Mechanical Draught Towers
  • 5.6.4. Change in Air Condition
  • 5.6.5. Temperature and Humidity Gradients in a Water Cooling Tower
  • 5.6.6. Evaluation of Heat and Mass Transfer Coefficients
  • 5.6.7. Humidifying Towers
  • 5.7. Systems Other than Air-Water
  • 5.8. Nomenclature
  • References
  • Further Reading
  • Chapter 6: Transport Processes in Microfluidic Applications
  • 6.1. Introduction
  • 6.2. Fluid Flow in Microchannels
  • 6.3. Dimensionless Groups in Microfluidics
  • 6.3.1. Reynolds Number
  • 6.3.2. Weissenberg Number
  • 6.3.3. Capillary Number
  • 6.3.4. Knudsen Number
  • 6.3.5. Peclet Number
  • 6.4. Alternative Ways of Driving Microscale Flows
  • 6.5. Transport Processes in Microscale Flows
  • 6.6. Analysis of a Model Surface-Based Sensor
  • 6.7. Mixing in Microfluidic Devices
  • 6.8. Further Reading in Microfluidics
  • References
  • Appendix
  • A.1. Tables of Physical Properties
  • A.2. Steam Tables
  • A.3. Mathematical Tables
  • Problems
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

138,04 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok