Power Management Techniques for Integrated Circuit Design

 
 
Wiley-IEEE Press
  • 1. Auflage
  • |
  • erschienen am 9. Mai 2016
  • |
  • 552 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-118-89682-2 (ISBN)
 
This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption.
* A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management
* Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes
* Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience
* Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors' manuals, and program downloads
weitere Ausgaben werden ermittelt
Ke-Horng Chen, Full-Professor, Electrical Engineering Department, National Chiao Tung University, Hsinchu, Taiwan; Associate Editor, IEEE Transactions on Power Electronics, and IEEE Transactions on Circuits and Systems II.
Ke-Horng Chen received his Ph.D. in electrical engineering from National Taiwan University, Taipei, Taiwan, in 2003. From 1996 to 1998, he was a part-time IC Designer at Philips, Taipei, Taiwan. From 1998 to 2000, he was an Application Engineer at Avanti, Ltd., Taiwan. From 2000 to 2003, he was a Project Manager at ACARD, Ltd., where he was engaged in designing power management ICs. He is the author or coauthor of more than 100 papers published in journals and conferences, and also holds several patents. His current research interests include power management ICs, mixed-signal circuit designs, display algorithm and driver designs of liquid crystal display (LCD) TV, red, green, and blue (RGB) color sequential backlight designs.
  • Intro
  • Title Page
  • Copyright
  • Contents
  • About the Author
  • Preface
  • Acknowledgments
  • Chapter 1 Introduction
  • 1.1 Moore´s Law
  • 1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter
  • 1.2.1 MOSFET Structure
  • 1.2.2 Scaling Effects
  • 1.2.3 Leakage Power Dissipation
  • 1.3 Challenge of Power Management IC in Advanced Technological Products
  • 1.3.1 Multi-Vth Technology
  • 1.3.2 Performance Boosters
  • 1.3.3 Layout-Dependent Proximity Effects
  • 1.3.4 Impacts on Circuit Design
  • 1.4 Basic Definition Principles in Power Management Module
  • 1.4.1 Load Regulation
  • 1.4.2 Transient Voltage Variations
  • 1.4.3 Conduction Loss and Switching Loss
  • 1.4.4 Power Conversion Efficiency
  • References
  • Chapter 2 Design of Low Dropout (LDO) Regulators
  • 2.1 Basic LDO Architecture
  • 2.1.1 Types of Pass Device
  • 2.2 Compensation Skills
  • 2.2.1 Pole Distribution
  • 2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero
  • 2.3 Design Consideration for LDO Regulators
  • 2.3.1 Dropout Voltage
  • 2.3.2 Efficiency
  • 2.3.3 Line/Load Regulation
  • 2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change
  • 2.4 Analog-LDO Regulators
  • 2.4.1 Characteristics of Dominant-Pole Compensation
  • 2.4.2 Characteristics of C-free Structure
  • 2.4.3 Design of Low-Voltage C-free LDO Regulator
  • 2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator
  • 2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA)
  • 2.5 Design Guidelines for LDO Regulators
  • 2.5.1 Simulation Tips and Analyses
  • 2.5.2 Technique for Breaking the Loop in AC Analysis Simulation
  • 2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation
  • 2.6 Digital-LDO (D-LDO) Design
  • 2.6.1 Basic D-LDO
  • 2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control
  • 2.6.3 Dynamic Voltage Scaling (DVS)
  • 2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique
  • 2.7.1 ADVS Technique
  • 2.7.2 Switchable D/A-LDO Regulator
  • References
  • Chapter 3 Design of Switching Power Regulators
  • 3.1 Basic Concept
  • 3.2 Overview of the Control Method and Operation Principle
  • 3.3 Small Signal Modeling and Compensation Techniques in SWR
  • 3.3.1 Small Signal Modeling of Voltage-Mode SWR
  • 3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR
  • 3.3.3 Small Signal Modeling of Current-Mode SWR
  • References
  • Chapter 4 Ripple-Based Control Technique Part I
  • 4.1 Basic Topology of Ripple-Based Control
  • 4.1.1 Hysteretic Control
  • 4.1.2 On-Time Control
  • 4.1.3 Off-Time Control
  • 4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control
  • 4.1.5 Summary of Topology of Ripple-Based Control
  • 4.2 Stability Criterion of On-Time Controlled Buck Converter
  • 4.2.1 Derivation of the Stability Criterion
  • 4.2.2 Selection of Output Capacitor
  • 4.3 Design Techniques When Using MLCC with a Small Value of RESR
  • 4.3.1 Use of Additional Ramp Signal
  • 4.3.2 Use of Additional Current Feedback Path
  • 4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path
  • 4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR
  • 4.3.5 Experimental Result of Ripple-Reshaped Function
  • References
  • Chapter 5 Ripple-Based Control Technique Part II
  • 5.1 Design Techniques for Enhancing Voltage Regulation Performance
  • 5.1.1 Accuracy in DC Voltage Regulation
  • 5.1.2 V2 Structure for Ripple-Based Control
  • 5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path
  • 5.1.4 Compensator for V2 Structure with Small RESR
  • 5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used
  • 5.1.6 Robust Ripple Regulator (R3)
  • 5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference
  • 5.2.1 Improvement of Noise Immunity of Feedback Signal
  • 5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal
  • 5.2.3 Technique of PLL Modulator
  • 5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad
  • 5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW
  • 5.3 Optimum On-Time Controller for Pseudo-Constant fSW
  • 5.3.1 Algorithm for Optimum On-Time Control
  • 5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq
  • 5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY
  • 5.3.4 Frequency Clamper
  • 5.3.5 Comparison of Different On-Time Controllers
  • 5.3.6 Simulation Result of Optimum On-Time Controller
  • 5.3.7 Experimental Result of Optimum On-Time Controller
  • References
  • Chapter 6 Single-Inductor Multiple-Output (SIMO) Converter
  • 6.1 Basic Topology of SIMO Converters
  • 6.1.1 Architecture
  • 6.1.2 Cross Regulation
  • 6.2 Applications of SIMO Converters
  • 6.2.1 System-on-Chip
  • 6.2.2 Portable Electronics Systems
  • 6.3 Design Guidelines of SIMO Converters
  • 6.3.1 Energy Delivery Paths
  • 6.3.2 Classifications of Control Methods
  • 6.3.3 Design Goals
  • 6.4 SIMO Converter Techniques for Soc
  • 6.4.1 Superposition Theorem in Inductor Current Control
  • 6.4.2 Dual-Mode Energy Delivery Methodology
  • 6.4.3 Energy-Mode Transition
  • 6.4.4 Automatic Energy Bypass
  • 6.4.5 Elimination of Transient Cross Regulation
  • 6.4.6 Circuit Implementations
  • 6.4.7 Experimental Results
  • 6.5 SIMO Converter Techniques for Tablets
  • 6.5.1 Output Independent Gate Drive Control in SIMO Converter
  • 6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter
  • 6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter
  • 6.5.4 Circuit Implementations
  • 6.5.5 Experimental Results
  • References
  • Chapter 7 Switching-Based Battery Charger
  • 7.1 Introduction
  • 7.1.1 Pure Charge State
  • 7.1.2 Direct Supply State
  • 7.1.3 Plug Off State
  • 7.1.4 CAS State
  • 7.2 Small Signal Analysis of Switching-Based Battery Charger
  • 7.3 Closed-Loop Equivalent Model
  • 7.4 Simulation with PSIM
  • 7.5 Turbo-boost Charger
  • 7.6 Influence of Built-In Resistance in the Charger System
  • 7.7 Design Example: Continuous Built-In Resistance Detection
  • 7.7.1 CBIRD Operation
  • 7.7.2 CBIRD Circuit Implementation
  • 7.7.3 Experimental Results
  • References
  • Chapter 8 Energy-Harvesting Systems
  • 8.1 Introduction to Energy-Harvesting Systems
  • 8.2 Energy-Harvesting Sources
  • 8.2.1 Vibration Electromagnetic Transducers
  • 8.2.2 Piezoelectric Generator
  • 8.2.3 Electrostatic Energy Generator
  • 8.2.4 Wind-Powered Energy Generator
  • 8.2.5 Thermoelectric Generator
  • 8.2.6 Solar Cells
  • 8.2.7 Magnetic Coil
  • 8.2.8 RF/Wireless
  • 8.3 Energy-Harvesting Circuits
  • 8.3.1 Basic Concept of Energy-Harvesting Circuits
  • 8.3.2 AC Source Energy-Harvesting Circuits
  • 8.3.3 DC-Source Energy-Harvesting Circuits
  • 8.4 Maximum Power Point Tracking
  • 8.4.1 Basic Concept of Maximum Power Point Tracking
  • 8.4.2 Impedance Matching
  • 8.4.3 Resistor Emulation
  • 8.4.4 MPPT Method
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Inhalt (PDF)

Download (sofort verfügbar)

111,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok