Energy Harvesting Communications

Principles and Theories
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 21. Dezember 2018
  • |
  • 328 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-38305-5 (ISBN)
 
Provides a systematic overview of a hot research area, examining the principles and theories of energy harvesting communications This book provides a detailed and advanced level introduction to the fundamentals of energy harvesting techniques and their use in state-of-the-art communications systems. It fills the gap in the market by covering both basic techniques in energy harvesting and advanced topics in wireless communications. More importantly, it discusses the application of energy harvesting in communications systems to give readers at different levels a full understanding of these most recent advances in communications technologies. The first half of Energy Harvesting Communications: Principles and Theories focuses on the challenges brought by energy harvesting in communications. The second part of the book looks at different communications applications enhanced by energy harvesting. It offers in-depth chapters that: discuss different energy sources harvested for communications; examine the energy harvesters used for widely used sources; study the physical layer and upper layer of the energy harvesting communications device; and investigate wireless powered communications, energy harvesting cognitive radios, and energy harvesting relaying as applications. * Methodically examines the state-of-the-art of energy harvesting techniques * Provides comprehensive coverage from basic energy harvesting sources and devices to the end users of these sources and devices * Looks at the fundamental principles of energy harvesting communications, and biomedical application and intra-body communications * Written in a linear order so that beginners can learn the subject and experienced users can attain a broader view Written by a renowned expert in the field, Energy Harvesting Communications: Principles and Theories is an excellent resource for students, researchers, and others interested in the subject.
weitere Ausgaben werden ermittelt
YUNFEI CHEN, PHD, is an Associate Professor at the University of Warwick, UK. His research interests include Communications and Statistical Signal Processing, Wireless System Design and Analysis, Energy Harvesting, Wireless Relaying and Sensing, and Cognitive Radios. He is a member of the Technical Program Committees for most major IEEE conferences on communications, including ICC, Globecom, WCNC, and VTC, and is a Senior Member of the IEEE. He has published several well-cited papers in the areas of energy harvesting and wireless communications, including three best paper awards.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Acronyms
  • Chapter 1 Introduction
  • 1.1 Background
  • 1.2 Relationship with Green Communications
  • 1.3 Potential Applications
  • 1.3.1 Energy Harvesting for 5G
  • 1.4 Outline of Chapters
  • Chapter 2 Energy Sources
  • 2.1 Introduction
  • 2.2 Types of Sources
  • 2.2.1 Mechanical Energy
  • 2.2.2 Solar/Light Energy
  • 2.2.3 Electromagnetic Energy
  • 2.3 Predictive Models of Sources
  • 2.3.1 Solar Energy Modeling
  • 2.3.2 Ambient RF Energy Modeling
  • 2.4 Summary
  • Chapter 3 Energy Harvesters
  • 3.1 Introduction
  • 3.2 Photovoltaic Panels
  • 3.2.1 Principles
  • 3.2.2 Models
  • 3.3 Radio Frequency Energy Harvester
  • 3.3.1 Principles
  • 3.3.2 Efficiencies
  • 3.4 Overall Models
  • 3.5 Battery and Supercapacitor
  • 3.5.1 Battery
  • 3.5.2 Supercapacitor
  • 3.6 Summary
  • Chapter 4 Physical Layer Techniques
  • 4.1 Introduction
  • 4.2 Effect of Energy Harvesting
  • 4.2.1 Distribution of Transmission Power
  • 4.2.2 Transmission Delay and Probability
  • 4.2.3 Bit Error Rate
  • 4.2.4 Achievable Rate
  • 4.2.5 General Information Theoretic Limits
  • 4.3 Energy Harvesting Detection
  • 4.4 Energy Harvesting Estimation
  • 4.4.1 With Relaying
  • 4.4.1.1 Scheme 1
  • 4.4.1.2 Scheme 2
  • 4.4.1.3 Scheme 3
  • 4.4.1.4 Scheme 4
  • 4.4.1.5 Scheme 5
  • 4.4.1.6 Scheme 6
  • 4.4.2 Without Relaying
  • 4.5 Energy Transmission Waveform
  • 4.5.1 Scenario
  • 4.5.2 Energy Waveform Optimization
  • 4.5.2.1 Linear Harvester
  • 4.5.2.2 Non-Linear Harvester
  • 4.6 Other Issues and Techniques
  • 4.6.1 Circuit Power Consumption
  • 4.6.2 Physical Layer Security
  • 4.6.3 Non-orthogonal Multiple Access
  • 4.6.4 Joint Detection and Estimation
  • 4.7 Summary
  • Chapter 5 Upper Layer Techniques
  • 5.1 Introduction
  • 5.2 Media Access Control Protocols
  • 5.2.1 Duty Cycling
  • 5.2.1.1 Wireless Power Transfer
  • 5.2.1.2 Ambient Energy Harvesting
  • 5.2.2 Other Issues in MAC Protocols
  • 5.3 Routing Protocols
  • 5.3.1 Ambient Energy Harvesting
  • 5.3.2 Wireless Power Transfer
  • 5.4 Other Issues in the Upper Layers
  • 5.4.1 Scheduling
  • 5.4.2 Effective Capacity
  • 5.5 Summary
  • Chapter 6 Wireless Powered Communications
  • 6.1 Introduction
  • 6.2 Types of Wireless Powered Communications
  • 6.3 Simultaneous Wireless Information and Power Transfer
  • 6.3.1 Ideal Implementations
  • 6.3.2 Practical Implementations
  • 6.3.2.1 Time Switching
  • 6.3.2.2 Power Splitting
  • 6.3.2.3 General Scheme
  • 6.4 Hybrid Access Point
  • 6.4.1 Rate-Energy Tradeoff
  • 6.4.2 Fairness Issue
  • 6.4.3 Channel Knowledge Issue
  • 6.4.3.1 Average Achievable Rate
  • 6.4.3.2 Average BER
  • 6.4.3.3 Numerical Examples
  • 6.5 Power Beacon
  • 6.5.1 System and Design Problem
  • 6.5.2 More Notes
  • 6.6 Other Issues
  • 6.6.1 Effect of Interference on Wireless Power
  • 6.6.1.1 System and Assumptions
  • 6.6.1.2 Performances with Interference
  • 6.6.1.3 Performances without Interference
  • 6.6.1.4 Numerical Examples
  • 6.6.2 Effect of Interference by Wireless Power
  • 6.6.2.1 System and Assumptions
  • 6.6.2.2 Average Interference Power
  • 6.6.2.3 Rate
  • 6.6.2.4 Numerical Examples
  • 6.6.3 Exploitation of Interference
  • 6.6.4 Multiple Antennas
  • 6.7 An Example: Wireless Powered Sensor Networks
  • 6.8 Summary
  • Chapter 7 Energy Harvesting Cognitive Radios
  • 7.1 Introduction
  • 7.1.1 Cognitive Radio
  • 7.1.2 Cognitive Radio Functions
  • 7.1.3 Spectrum Sensing
  • 7.1.4 Energy Harvesting Cognitive Radio
  • 7.2 Conventional Cognitive Radio
  • 7.2.1 Different Types of Cognitive Radio Systems
  • 7.2.2 Spectrum Sensing Methods
  • 7.2.2.1 Energy Detection
  • 7.2.2.2 Feature Detection
  • 7.3 Types of Energy Harvesting Cognitive Radio
  • 7.3.1 Protocols
  • 7.3.2 Energy Sources
  • 7.4 From the Secondary Base Station
  • 7.5 From the Primary User
  • 7.5.1 Conventional PU
  • 7.5.2 Wireless Powered PU
  • 7.6 From the Ambient Environment
  • 7.7 Information Energy Cooperation
  • 7.8 Other Important Issues
  • 7.9 Summary
  • Chapter 8 Energy Harvesting Relaying
  • 8.1 Introduction
  • 8.1.1 Wireless Relaying
  • 8.1.2 Relaying Protocols
  • 8.1.3 Energy Harvesting Relaying
  • 8.2 Conventional Relaying
  • 8.2.1 Amplify-and-Forward Relaying
  • 8.2.2 Decode-and-Forward Relaying
  • 8.2.3 Performance Metrics
  • 8.2.3.1 Amplify-and-Forward
  • 8.2.3.2 Decode-and-Forward
  • 8.2.4 Relay Selection
  • 8.2.4.1 Full Selection
  • 8.2.4.2 Partial Selection
  • 8.2.5 Two-Way Relaying
  • 8.3 Types of Energy Harvesting Relaying
  • 8.4 From the Ambient Environment
  • 8.5 From the Power Transmitter
  • 8.5.1 One User and Single Antenna
  • 8.5.2 Multiple Users and Single Antenna
  • 8.5.3 One User and Multiple Antennas
  • 8.6 From the Source
  • 8.6.1 Amplify-and-Forward Relaying
  • 8.6.2 Decode-and-Forward Relaying
  • 8.6.2.1 Instantaneous Transmission
  • 8.6.2.2 Delay- or Error-Constrained Transmission
  • 8.6.2.3 Delay- or Error-Tolerant Transmission
  • 8.6.2.4 Numerical Examples
  • 8.6.3 Energy Harvesting Source
  • 8.7 Other Important Issues
  • 8.7.1 Interference
  • 8.7.1.1 Time Switching
  • 8.7.1.2 Power Splitting
  • 8.7.2 Multi-Hop
  • 8.7.2.1 Time Switching
  • 8.7.2.2 Power Splitting
  • 8.7.2.3 Numerical Examples
  • 8.7.3 Others
  • 8.8 Summary
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

81,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen