Novel Nanoscale Hybrid Materials

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 25. Januar 2018
  • |
  • 368 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-15627-7 (ISBN)
 
A comprehensive resource filled with strategic insights, tools, and techniques for the design and construction of hybrid materials Hybrid materials represent the best of material properties being combined for the development for materials with properties otherwise unavailable for application requirements. Novel Nanoscale Hybrid Materials is a comprehensive resource that contains contributions from a wide range of noted scientists from various fields, working on the hybridization of nanomolecules in order to generate new materials with superior properties. The book focuses on the new directions and developments in design and application of new materials, incorporating organic/inorganic polymers, biopolymers, and nanoarchitecture approaches. This book delves deeply into the complexities that arise when characteristics of a molecule change on the nanoscale, overriding the properties of the individual nanomolecules and generating new properties and capabilities altogether. The main topics cover hybrids of carbon nanotubes and metal nanoparticles, semiconductor polymer/biopolymer hybrids, metal biopolymer hybrids, bioorganic/inorganic hybrids, and much more. This important resource: * Addresses a cutting-edge field within nanomaterials by presenting a groundbreaking topics that address hybrid nanostructures * Includes contributions from an interdisciplinary group of chemists, physicists, materials scientists, chemical and biomedical engineers * Contains applications in a wide-range of fields--including biomedicine, energy, catalysis, green chemistry, graphene chemistry, and environmental science * Offers expert commentaries that explore potential future avenues of future research trends Novel Nanoscale Hybrid Materials is an important resource for chemists, physicists, materials, chemical and biomedical engineers that offers the most recent developments and techniques in hybrid nanostructures.
weitere Ausgaben werden ermittelt
BHANU P. S. CHAUHAN is a Professor and the Chairperson of the Department of Chemistry at William Paterson University, where he heads the Engineered Nanomaterials Laboratory. He obtained his PhD under the guidance of Professor Robert Corriu and Gerard Lanneau from Montpellier University II, France and received postdoctoral training in the groups of Professor Masato Tanaka (National Institute of Materials and Chemical Research in Japan) and Professor Phil Boudjouk (North Dakota State University). He has held the position of Assistant Professor at the Catholic University of America and City University of New York-CSI, where he also attained the rank of Associate Professor. He joined William Paterson University (WPU) in 2007 as a Professor and Chair of the Department. His research area is in the field of nanomaterials synthesis and application in areas such as green catalysis, hybrid materials for new optical and data storage, and nanostructure-based drug delivery vehicles.
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Chapter 1 Silanols as Building Blocks for Nanomaterials
  • 1.1 Introduction
  • 1.2 Synthesis and Applications of Silanols
  • 1.2.1 Silanetriols and Disiloxanetetraols
  • 1.2.2 Cyclotetrasiloxanetetraol (Cyclic Silanols, All-cis Isomer)
  • 1.2.3 Cyclotetrasiloxanetetraol (Cyclic Silanols, Other Isomers)
  • 1.2.4 Cyclotrisiloxanetriol
  • 1.3 Structures and Properties of Nanomaterials Obtained from Silanols
  • 1.3.1 Structure of Laddersiloxanes
  • 1.3.2 Thermal Property of Laddersiloxanes
  • 1.3.3 Thermal Property of Other Silsesquioxanes
  • 1.3.4 Refractive Indices of Silsesquioxanes
  • 1.4 Summary and Outlook
  • References
  • Chapter 2 Biomacromolecule-Enabled Synthesis of Inorganic Materials
  • 2.1 Introduction
  • 2.2 DNA
  • 2.3 Proteins and Peptides
  • 2.3.1 Cage Proteins
  • 2.3.2 Bovine Serum Albumin (BSA)
  • 2.3.3 Engineered Peptides
  • 2.3.4 Engineered Protein Scaffolds
  • 2.4 Polysaccharides
  • 2.5 Methods of Characterization
  • 2.6 Conclusion
  • References
  • Chapter 3 Multilayer Assemblies of Biopolymers: Synthesis, Properties, and Applications
  • 3.1 Introduction
  • 3.2 Assembly of Biopolymer Multilayers
  • 3.2.1 Biopolymers and Their Properties
  • 3.2.2 Growth and Thickness of Biopolymer Multilayers
  • 3.2.3 Stability in Solutions and Enzymatic Degradation of Biopolymer Multilayers
  • 3.2.4 Hydration and Swelling of Biopolymer Multilayers
  • 3.3 Properties of Biopolymer Multilayers
  • 3.3.1 Surface Properties of Biopolymer Multilayers and Their Interaction with Cells
  • 3.3.2 Antibacterial Properties
  • 3.3.3 Immunomodulatory Properties
  • 3.3.4 Mechanical Properties of Biopolymer Multilayers
  • 3.3.5 Other Properties
  • 3.4 Applications
  • 3.5 Conclusion and Outlook
  • Acknowledgment
  • References
  • Chapter 4 Functionalization of P3HT-Based Hybrid Materials for Photovoltaic Applications
  • 4.1 Introduction
  • 4.2 Design and Synthesis of Regioregular Poly(3-Hexylthiophene)
  • 4.2.1 Metal-Catalyzed Cross-Coupling Reactions
  • 4.2.2 Functionalization of P3HT
  • 4.3 Morphology Control of P3HT/PCBM Blend by Functionalization
  • 4.3.1 Introduction
  • 4.3.2 End-Group Functionalization
  • 4.3.3 Side-Chain Functionalization
  • 4.4 Polymer-Metal Oxide Hybrid Solar Cells
  • 4.4.1 Anchoring Method
  • 4.4.2 Surface Modification Using End- and Side-Chain-Functionalized P3HT
  • 4.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 5 Insights on Nanofiller Reinforced Polysiloxane Hybrids
  • 5.1 Properties of Silicone (Polysiloxane)
  • 5.2 Nanofiller Composition and Chemistry
  • 5.2.1 Fumed Silica
  • 5.2.2 Aerogel Silica
  • 5.2.3 Carbon Black
  • 5.3 Polymer [Poly(dimethylsiloxane)]-Filler Interaction
  • 5.4 Polymer-Filler Versus Filler-Filler Interactions
  • 5.5 PDMS Nanocomposite with Anisotropic Fillers
  • 5.6 PDMS-Molecular Filler Nanocomposite
  • Acknowledgments
  • References
  • Chapter 6 Nanophotonics with Hybrid Nanostructures: New Phenomena and New Possibilities
  • 6.1 Introduction
  • 6.2 Theoretical Nanophotonics
  • 6.2.1 Mie Theory for Spherical Nanostructures
  • 6.2.2 Transfer Matrix Methods for Planar Structures
  • 6.2.3 The Finite-Difference Time-Domain Method
  • 6.2.4 The Discrete Dipole Approximation
  • 6.3 Hybrid Nanostructures
  • 6.3.1 Emergent Electrodynamics Phenomena: Inhomogeneous Surface Plasmon Polaritons
  • 6.3.2 Advancing Imaging Beyond the Diffraction Limit with ISPPs
  • 6.3.3 Emergent Material-Dependent Optical Response in Hybrid Nanostructures
  • 6.3.4 Perspective on the Horizon of Health Applications of Hybrid Nanostructures
  • 6.3.5 Photodynamic Therapy
  • 6.3.6 In Vivo Light Sources
  • 6.4 Concluding Remarks
  • References
  • Chapter 7 Drug Delivery Vehicles from Stimuli-Responsive Block Copolymers
  • 7.1 Introduction
  • 7.2 Block Copolymers for Drug Delivery
  • 7.3 Polymeric Nanoparticles
  • 7.3.1 Micelles
  • 7.3.2 Hydrogels
  • 7.3.3 Polymersomes
  • 7.4 Stimuli-Responsive Drug Delivery
  • 7.4.1 Physical/External Stimuli-Responsive Polymers
  • 7.4.2 Chemical/Internal Stimuli-Responsive Polymers
  • 7.5 Challenges and Prospects
  • 7.6 Summary
  • References
  • Chapter 8 Mechanical Properties of Rubber-Toughened Epoxy Nanocomposites
  • 8.1 Introduction
  • 8.2 Epoxy Resins
  • 8.3 Rubber-Toughened Epoxy Resin
  • 8.4 Nanoparticle Filled Epoxy Nanocomposites
  • 8.5 Carbon Nanotubes
  • 8.6 Rubber-Toughened CNT Filled Epoxy Nanocomposites
  • 8.7 Nanoclay Filled Epoxy Nanocomposites
  • 8.8 Rubber-Toughened Nanoclay Filled Epoxy Nanocomposites
  • 8.9 Silicon Dioxide Nanoparticles
  • 8.10 Rubber-Toughened Nanosilica Filled Epoxy Nanocomposites
  • 8.11 Conclusions
  • Acknowledgments
  • References
  • Further Reading
  • Chapter 9 Metal Complexes in Reverse Micelles
  • 9.1 Introduction
  • 9.2 Location of Metal Complex Probes in the RM Core
  • 9.3 Metal Complexes in Confinement
  • 9.3.1 Substitution Reactions and Physical Methods
  • 9.3.2 Redox Reactions in Reverse Micelles
  • 9.3.3 Metal Ion Binding
  • 9.4 Conclusions
  • References
  • Chapter 10 Heterogenized Catalysis on Metals Impregnated Mesoporous Silica
  • 10.1 Introduction
  • 10.2 Mesoporous Silica in Catalysis
  • 10.3 Modified Mesoporous Silica
  • 10.4 Recent Advances in SBA Applied to Catalysis
  • 10.5 Conclusion
  • References
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

140,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen