Advances in Sugarcane Biorefinery

Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 14. Dezember 2017
  • |
  • 342 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-804544-2 (ISBN)
 

Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products, by Chandel and Tomé, compiles the basic and applied information covering cane and biomass processing for sugar and ethanol production, as well as by-products utilization for improving the economy of sugarcane biorefineries. In this unique collection of 14 chapters, specialists in their field provide critical insights into several topics, review the current research, and discuss future progress in this research area.

The book presents the most current advances in sugarcane biorefinery, including sugarcane crop cultivation, new sugarcane varieties, soil health, mechanization of crop, technical aspects of first and second generation ethanol production, economic analysis, life cycle assessment, biomass logistics and storage, co-generation of heat and electricity, process intensification and alternative by-products utilization. The book also explores the business ecosystem of sugarcane biorefineries, marketing analysis of ethanol demand and price dwindling patterns, aiming for a futuristic scenario. This book will be especially useful for scientists, researchers and technicians who are working in the area of biomass based biorefineries, as well as professionals in the sugar and alcohol industry. It also brings relevant content for policy makers, market analysts, agriculture scientists and managers.

  • Presents technological updates on biomass processing, system biology, microbial fermentation, catalysis, regeneration and monitoring of renewable energy and recovery processes
  • Includes topics on techno-economic analysis, life cycle assessment, sustainability, markets and policy
  • Explores the future potential of biorefineries with zero or near zero waste, and the potential of valorization of all by-products, including alternatives to current applications and the management of a large amount of residues
  • Englisch
  • Saint Louis
  • |
  • USA
  • 6,08 MB
978-0-12-804544-2 (9780128045442)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Sugarcane Biorefinery
  • Copyright Page
  • Quotes
  • Contents
  • List of Contributors
  • Biography
  • Foreword
  • Preface
  • 1 Sugarcane Cultivation: Soil Mapping, Environmental Effects, and New Sugarcane Varieties
  • 1.1 Introduction
  • 1.2 Soil Mapping and Sugarcane Cultivation Environment
  • 1.3 Soil Groups for Agricultural Management: Base for Applying Agronomic Technologies
  • 1.4 Technological Advancements for Improved Sugarcane New Varieties
  • 1.4.1 Brazilian Sugarcane Breeding Program: Historical Features
  • 1.4.2 The Main Features of Sugarcane Breeding Programs
  • 1.4.3 Sugarcane Variety Census and Planting Intention-Season 2016/17
  • 1.5 Conclusion
  • References
  • Further Reading
  • 2 Sugarcane Trash as Feedstock for Biorefineries: Agricultural and Logistics Issues
  • 2.1 Introduction
  • 2.2 Biomass Supply Chain
  • 2.3 Agronomic and Sustainability Issues
  • 2.4 Baling System
  • 2.4.1 Agricultural Logistics
  • 2.4.1.1 Windrowing
  • 2.4.1.2 Baling
  • 2.4.1.3 Bale Collection
  • 2.4.1.4 Bale Loading
  • 2.4.1.5 Bale Transportation
  • 2.4.2 Bale Processing
  • 2.4.2.1 Bale Unloading
  • 2.4.2.2 Twine Removal
  • 2.4.2.3 Debaling
  • 2.4.2.4 Screening
  • 2.4.2.5 Shredding
  • 2.5 Integral Harvesting
  • 2.5.1 Agricultural Logistics
  • 2.5.2 Industrial Processing
  • 2.6 Biomass Critical Dimensions
  • 2.6.1 Supply Guarantee
  • 2.6.2 Agricultural Operations
  • 2.6.3 Factory Processing
  • 2.6.4 Biomass Quality
  • 2.6.5 Storage
  • 2.6.6 Investment
  • 2.7 Conclusion
  • References
  • 3 The Use of Synthetic Biology Tools in Biorefineries to Increase the Building Blocks Diversification
  • 3.1 Introduction
  • 3.2 Concept of Biorefineries
  • 3.2.1 Biomass Valorization: A Key Process in Biorefinery
  • 3.2.2 Biorefinery: Aspects and Technologies
  • 3.2.3 Synthetic Biology: New Frontiers for Lignocellulosic Biorefineries
  • 3.3 Sugarcane as Bio-Based Raw Material in Biorefineries
  • 3.4 The Basic Concept of Synthetic Biology and Its Application
  • 3.5 Tools Used in Synthetic Biology to Allow Novel Metabolic Pathways
  • 3.5.1 Type IIS Restriction Endonuclease-Based Methods
  • 3.6 Transformation-Associated Recombination Cloning
  • 3.7 Preferred and Possible Utilized Chassis in Synthetic Biology
  • 3.7.1 Bacteria
  • 3.7.2 Yeasts
  • 3.7.3 Filamentous Fungi
  • 3.8 The Building Block Portfolio Possibilities
  • 3.8.1 Cell Factories
  • 3.8.2 Building Blocks
  • 3.8.3 Succinic Acid
  • 3.8.4 Lactic Acid
  • 3.8.5 Itaconic Acid
  • 3.8.6 Xylitol
  • 3.8.7 Adipic Acid
  • 3.8.8 Ethanol
  • 3.8.9 Fumaric Acid
  • 3.8.10 Butanol
  • 3.8.11 Putrescine
  • 3.8.12 Cadaverine
  • 3.8.13 Building Blocks for Aromatic Polymers
  • 3.8.14 Special Chemicals
  • 3.8.15 Biohydrocarbons
  • 3.9 Conclusion and Future Prospects
  • Conflict of Interest
  • Acknowledgements
  • References
  • 4 Technological Advancements in 1G Ethanol Production and Recovery of By-Products Based on the Biorefinery Concept
  • 4.1 Introduction
  • 4.2 Techniques in Ethanol Production From Sugarcane
  • 4.2.1 Crop Production, Harvesting and Transportation
  • 4.2.2 Cleaning, Grinder and Juice Extraction
  • 4.2.3 Sugar Production and Molasses Generation
  • 4.2.4 Fermentative Processes
  • 4.3 New Technologies Involved in the Production of Ethanol 1G
  • 4.3.1 Yeast Research
  • 4.3.1.1 Selection and Genetic Improvement of Yeasts
  • 4.3.1.2 Genetics Behind Yeast Robustness and Dominance
  • 4.3.1.3 Increasing Ethanol Yields by Reducing By-Product Formation
  • 4.3.1.4 Tolerance to Ethanol, High Temperatures and High Osmotic Pressure
  • 4.3.2 Improvement of Sugarcane
  • 4.3.3 Coproducts in the Bioethanol Industry
  • 4.3.3.1 Sucrose
  • 4.3.3.2 Power Generation
  • 4.3.3.3 Vinasse
  • 4.3.3.4 Dry Yeast
  • 4.3.3.5 Bioplastic
  • 4.3.3.6 CO2
  • 4.3.3.7 Other Chemicals
  • 4.4 Conclusions
  • References
  • 5 Bioconversion of Hemicellulose Into Ethanol and Value-Added Products: Commercialization, Trends, and Future Opportunities
  • 5.1 Introduction
  • 5.2 Biomass Pretreatment, Dilute Acid Hydrolysis, Detoxification
  • 5.2.1 Enzymatic Hydrolysis of Lignocellulose Carbohydrate
  • 5.3 Fermentation Process for Ethanol and Bioproducts of Commercial Significance
  • 5.3.1 Ethanol
  • 5.3.2 Xylitol Production
  • 5.3.3 Butanediol
  • 5.3.4 Polyhydroxyalkanoates and Polyhydroxybutyrate
  • 5.3.5 Organic Acids
  • 5.4 Fermentation Strategies for C5 Sugar Utilization (Batch, Fed-Batch, Continuous Process)
  • 5.5 Improvement of Fermentation Performance of C5 Sugars to 2G Ethanol Through Strain Engineering
  • 5.6 Commercial Solutions for the Fermentation of Xylose
  • 5.6.1 Processes Utilizing S. cerevisiae
  • 5.6.2 Alternative Microorganisms and/or Processes
  • 5.7 Conclusions and Future Recommendations
  • Acknowledegments
  • References
  • Further Reading
  • 6 Second Generation Ethanol Production: Potential Biomass Feedstock, Biomass Deconstruction, and Chemical Platforms for Pro...
  • 6.1 Introduction
  • 6.2 Potential Biomass Feedstock: Base of Biorefinery
  • 6.2.1 Biomass Deconstruction
  • 6.2.2 Enzymatic Hydrolysis of Pre-treated Lignocellulosic Substrates
  • 6.2.3 Promising Chemical Pathways for Lignocellulose Biorefineries
  • 6.3 Conclusion
  • References
  • Further Reading
  • 7 Sugarcane Vinasse, Molasses, Yeast Cream: Agricultural, Environmental, and Industrial Aspects
  • 7.1 Introduction
  • 7.2 Process Overview of Ethanol Industry With Respect to Molasses, Yeast, and Vinasse
  • 7.2.1 Fermentation: Batch, Fed-Batch or Continuous Operation
  • 7.2.1.1 Molasses Handling and Distribution
  • 7.2.1.2 Yeast Propagation
  • 7.2.1.2.1 Pre-fermentation
  • 7.2.1.2.2 Fermentation
  • 7.2.2 Distillation
  • 7.2.3 Vinasse Evaporation
  • 7.3 Molasses and Sugarcane Production in India (Industry research, ISMA, secondary information)
  • 7.4 Yeast: Critical Ingredient for Better Efficiency (Proprietary information of Praj Industries Limited)
  • 7.5 About Praj Industries Ltd. Pune, India
  • 7.6 Conclusions
  • References
  • 8 Valorization of By-Products Following the Biorefinery Concept: Commercial Aspects of By-Products of Lignocellulosic Biomass
  • 8.1 Introduction
  • 8.2 By-Products From Sugarcane Biorefinery
  • 8.2.1 Hemicellulose
  • 8.2.2 Lignin
  • 8.3 Valorization of By-Products and Their Commercial Aspects
  • 8.3.1 Hemicellulose
  • 8.3.1.1 Xylose
  • 8.3.1.2 Xylitol
  • 8.3.1.3 Furfural and Derivatives
  • 8.3.1.4 Ethanol and Butanol
  • 8.3.1.5 Organic Acids
  • 8.3.2 Lignin
  • 8.3.2.1 Lignin Microcapsules
  • 8.3.2.2 Base Material
  • 8.3.2.3 Adsorbent
  • 8.3.2.4 UV-Absorbent
  • 8.3.2.5 Electrochemical Applications
  • 8.3.2.6 Carbon Material Precursor
  • 8.3.2.7 Chemical Production
  • 8.3.2.8 Lignin-Based Copolymers
  • 8.3.2.8.1 Thermoset Resins
  • 8.3.2.8.2 Polyurethanes
  • 8.3.2.8.3 Polyesters
  • 8.3.2.8.4 Copolymers
  • 8.4 Challenges
  • 8.5 Conclusions
  • Acknowledgements
  • Abbreviations
  • References
  • 9 Nanocelluloses From Sugarcane Biomass
  • 9.1 Introduction
  • 9.2 Cellulose from Sugarcane Bagasse
  • 9.2.1 Methods for Extraction of Cellulose from Sugarcane Bagasse
  • 9.3 Production of Nanocelluloses
  • 9.3.1 Production of Cellulose Nanocrystals (CNC)
  • 9.3.1.1 Acid Hydrolysis
  • 9.3.1.2 Enzymatic Hydrolysis
  • 9.3.2 Production of Cellulose Nanofibrils (CNF)
  • 9.3.2.1 Homogenization and Microfluidization at High Pressure
  • 9.3.2.2 Nanogrinding
  • 9.3.2.3 High Intensity Ultrasonication
  • 9.3.2.4 Pre-treatments
  • 9.4 Production of Nanocelluloses From Sugarcane Bagasse
  • 9.4.1 Properties of Nanocelluloses From Sugarcane Bagasse
  • 9.5 Conclusion
  • Acknowledgment
  • References
  • 10 Techno-Economic Analysis of Cogeneration of Heat and Electricity and Second-Generation Ethanol Production from Sugarcane
  • 10.1 Introduction
  • 10.2 Sugarcane Facilities: Present and Future Configurations
  • 10.3 Cogeneration and Second Generation Ethanol Production
  • 10.4 Methods for Techno-Economic Analysis: Software Assisted Simulations, Economic Engineering Principles
  • 10.5 Factors Governing Techno-Economic Analysis of Combined Heat and Power and Cellulosic Ethanol Production
  • 10.6 Final Remarks
  • References
  • 11 Life Cycle Assessment of Sugarcane Biorefinery: Energy Use, Environmental Assessment, and Other Sustainability Indicators
  • 11.1 Introduction
  • 11.2 Basic Elements of Biorefinery
  • 11.2.1 Location Importance
  • 11.3 Biofuels in the Realm of Biorefinery Profile in Various Countries
  • 11.3.1 The Case of Brazil
  • 11.3.2 The Case of India
  • 11.3.3 The Case of China
  • 11.3.4 The Case of Australia
  • 11.3.5 The Case of Thailand
  • 11.3.6 The Case of South Africa
  • 11.4 Important Products in the Biorefinery Line
  • 11.4.1 Bioethanol
  • 11.4.2 Biobutanol
  • 11.4.3 Biomethanol
  • 11.4.4 Biomass Derived Energy
  • 11.4.5 Bioplastics From Bioethanol
  • 11.4.6 Biogas
  • 11.5 Techno-Economic and Life Cycle Assessment
  • 11.5.1 Methodology
  • 11.5.1.1 Operational Unit
  • 11.5.1.2 Allocation Methods
  • 11.5.2 Cycle Type
  • 11.5.2.1 Cradle-to-Grave
  • 11.5.2.2 Cradle-to-the-Gate
  • 11.5.2.3 Well-to-the-Wheel
  • 11.5.3 Indicators
  • 11.5.4 Interpretation
  • 11.5.5 Footprint Strategy Map
  • 11.5.6 Virtual Sugarcane Biorefinery Tool
  • 11.6 Conclusion
  • References
  • 12 Comparative Account of Carbon Footprints of Burning Gasoline and Ethanol
  • 12.1 Introduction
  • 12.2 Greenhouse Gas Emissions
  • 12.3 Role of Greenhouse Gas Emissions in Climate Change
  • 12.4 Gasoline Versus Bioethanol
  • 12.5 Low Carbon Fuel Properties
  • 12.6 Fuel Life Cycle
  • 12.7 Emissions From Conventional Fuels
  • 12.8 Emissions From Biofuels
  • 12.9 IPCC Recommendations for Control of Greenhouse Gas Emissions
  • References
  • Further Reading
  • 13 Global Ethanol Market: Commercialization Trends, Regulations, and Key Drivers
  • 13.1 Introduction
  • 13.1.1 The Importance of Biofuels in the Global Context
  • 13.2 World Ethanol Market
  • 13.2.1 World Ethanol Fuel Production
  • 13.2.2 World Ethanol Fuel Consumption, Imports and Exports
  • 13.3 The United States Biofuel Policy
  • 13.3.1 Advanced Ethanol
  • 13.3.2 United States Legislation for the Increased Use of Renewable Fuels
  • 13.3.2.1 Mandates
  • 13.3.2.1.1 Subsidy via Credit
  • 13.3.2.1.2 Import Tax
  • 13.3.2.1.3 Revised Mandatory RFS2 Volumes
  • 13.3.3 Ethanol Renewable Identification Numbers (RINS)
  • 13.3.3.1 Limiting Factors for Higher Use of Ethanol in the USA
  • 13.3.3.2 The Future of Ethanol in the USA
  • 13.3.3.3 California, a Distinguished State
  • 13.4 Mandates in Force in World Countries: Mandatory Addition of Biofuels to Fossil Fuels
  • 13.5 Regulation in Brazil: Specific Case of the Change in the Percentage of Anhydrous Ethanol in Gasoline
  • 13.5.1 Internal Brazilian Ethanol Market
  • 13.5.1.1 Revisiting the Prices of Anhydrous Ethanol and Hydrous Ethanol in the Brazilian Market
  • 13.6 Final Considerations
  • References
  • Further Reading
  • 14 Evolution in Public Policies Designed to Develop the Sugar-Energy Industry in Brazil
  • 14.1 Introduction
  • 14.2 Emergence of Ethanol Fuel in Brazil, the incentive policies for Main Production
  • 14.3 Evolution of Public Sector Regulatory Policies in the 1970s and 1980s
  • 14.4 Industrial Deregulation in the 1990s
  • 14.5 The Dynamics of the Sugar-Energy Industry in the Free Market Environment
  • 14.5.1 Changes in the Sugarcane Marketing Structure
  • 14.5.2 The Launch of the Flexible Fuel Vehicle (FFV) or Dual Fuel Vehicle (In Portuguese, "Flex" Vehicle) and the New Cycle...
  • 14.5.3 The Relationship Between the Ethanol Industry and the Policy Regarding the Oil Industry
  • 14.6 Biofuels and Public Policies
  • 14.7 Final Considerations
  • References
  • Further Reading
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

164,22 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen