Extreme Events in Geospace

Origins, Predictability, and Consequences
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. Dezember 2017
  • |
  • 798 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-812701-8 (ISBN)
 

Extreme Events in Geospace: Origins, Predictability, and Consequences helps deepen the understanding, description, and forecasting of the complex and inter-related phenomena of extreme space weather events. Composed of chapters written by representatives from many different institutions and fields of space research, the book offers discussions ranging from definitions and historical knowledge to operational issues and methods of analysis.

Given that extremes in ionizing radiation, ionospheric irregularities, and geomagnetically induced currents may have the potential to disrupt our technologies or pose danger to human health, it is increasingly important to synthesize the information available on not only those consequences but also the origins and predictability of such events. Extreme Events in Geospace: Origins, Predictability, and Consequences is a valuable source for providing the latest research for geophysicists and space weather scientists, as well as industries impacted by space weather events, including GNSS satellites and radio communication, power grids, aviation, and human spaceflight.

The list of first/second authors includes M. Hapgood, N. Gopalswamy, K.D. Leka, G. Barnes, Yu. Yermolaev, P. Riley, S. Sharma, G. Lakhina, B. Tsurutani, C. Ngwira, A. Pulkkinen, J. Love, P. Bedrosian, N. Buzulukova, M. Sitnov, W. Denig, M. Panasyuk, R. Hajra, D. Ferguson, S. Lai, L. Narici, K. Tobiska, G. Gapirov, A. Mannucci, T. Fuller-Rowell, X. Yue, G. Crowley, R. Redmon, V. Airapetian, D. Boteler, M. MacAlester, S. Worman, D. Neudegg, and M. Ishii.

  • Helps to define extremes in space weather and describes existing methods of analysis
  • Discusses current scientific understanding of these events and outlines future challenges
  • Considers the ways in which space weather may affect daily life
  • Demonstrates deep connections between astrophysics, heliophysics, and space weather applications, including a discussion of extreme space weather events from the past
  • Examines national and space policy issues concerning space weather in Australia, Canada, Japan, the United Kingdom, and the United States
  • Englisch
  • Saint Louis
  • |
  • USA
  • 77,77 MB
978-0-12-812701-8 (9780128127018)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Extreme Events in Geospace: Origins, Predictability, and Consequences
  • Copyright
  • Contents
  • Author Biography's
  • Foreword
  • Acronyms
  • Introduction
  • Part 1: Overview of Impacts and Effects
  • Chapter 1: Linking Space Weather Science to Impacts-The View From the Earth
  • 1. Introduction
  • 2. Space Weather Environments at Earth
  • 3. Geomagnetically Induced Currents-The Impacts of Natural Geoelectric Fields
  • 4. Space Weather Impacts on the Upper Atmosphere
  • 4.1. Overview of the Upper Atmosphere
  • 4.2. Trans-Ionospheric Radio Propagation
  • 4.3. Atmospheric Drag
  • 5. Atmospheric Radiation Environment
  • 6. Satellite Plasma Environments
  • 7. Looking to the Future: How May Space Weather Risks Evolve?
  • References
  • Part 2: Solar Origins and Statistics of Extremes
  • Chapter 2: Extreme Solar Eruptions and their Space Weather Consequences
  • 1. Introduction
  • 2. Overview of Extreme Events
  • 3. Estimates of Extreme Events
  • 3.1. CME Speeds
  • 3.2. Distribution Functions for CME Speeds and Kinetic Energies
  • 3.3. Flare Size Distribution
  • 3.4. Active Regions and Their Magnetic Fields
  • 4. Consequences of Solar Eruptions
  • 4.1. SEP Events
  • 4.2. SEP Fluences
  • 4.3. Large Geomagnetic Storms
  • 5. Summary and Conclusions
  • References
  • Further Reading
  • Chapter 3: Solar Flare Forecasting: Present Methods and Challenges
  • 1. Introduction: Solar Flares and Societal Impacts
  • 1.1. Flare Forecasting History
  • 2. Present Approaches
  • 2.1. Two Basic Paradigms
  • 2.2. Event Definitions
  • 2.3. Parametrizations
  • 2.4. The Statistical Classifiers
  • 2.5. Self-Organized Criticality and Related
  • 2.6. Operational Versus Research
  • 2.7. Evaluation
  • 2.8. The Role of Numerical Models
  • 3. Present Status
  • 3.1. How Good?
  • 3.2. Why Not So Good?
  • 3.3. Extreme Solar Flares
  • 4. Future
  • 4.1. Outlook for the Extreme Extremes
  • 4.2. Pertinent Question: Are Forecasts Useful?
  • 4.3. Avenues for Improvement
  • 4.3.1. Research into flare trigger mechanisms
  • 4.3.2. Addressing correlated variables
  • 4.3.3. New event definitions
  • 4.3.4. Statistical approaches
  • 4.3.5. New data sources
  • 5. Summary and Recommendations
  • Acknowledgments
  • References
  • Chapter 4: Geoeffectiveness of Solar and Interplanetary Structures and Generation of Strong Geomagnetic Storms
  • 1. Introduction
  • 2. Methods
  • 3. Results
  • 4. Discussion
  • 5. Conclusions
  • References
  • Chapter 5: Statistics of Extreme Space Weather Events
  • 1. Introduction
  • 2. Methodologies
  • 2.1. Datasets
  • 2.2. Statistical Modeling
  • 2.2.1. Estimating the best-fit parameters to a model
  • 2.2.2. Identifying the tail in the distribution
  • 2.2.3. Nonparametric bootstrapping
  • 2.2.4. Model comparison
  • 3. Results
  • 3.1. Assessing the Validity of the Time Stationarity Assumption
  • 3.2. Analysis of Dxt and Dcx
  • 3.3. Extreme Space Weather Events in the Ionosphere: The AE Index
  • 3.4. Extreme Space Weather Events in the Heliosphere: Energetic Protons
  • 4. Discussion
  • 5. Future Studies
  • 6. Conclusions
  • References
  • Chapter 6: Data-Driven Modeling of Extreme Space Weather
  • 1. Introduction
  • 2. Data-driven Modeling of Space Weather
  • 3. Predictability of Extreme Space Weather
  • 4. Conclusion
  • References
  • Further Reading
  • Part 3: Geomagnetic Storms and Geomagnetically Induced Currents
  • Chapter 7: Supergeomagnetic Storms: Past, Present, and Future
  • 1. Historical Background
  • 2. Present Knowledge About Geomagnetic Storms
  • 2.1. Interplanetary Causes of Intense Magnetic Storms
  • 2.2. Magnetic Storms: Categories and Types
  • 2.3. Some Important Characteristics of Magnetic Storms
  • 3. Supermagnetic Storms
  • 3.1. Past Supermagnetic Storms
  • 3.2. Supermagnetic Storms: Present (Space-Age Era)
  • 3.3. Supermagnetic Storms: In Future
  • 3.3.1. Maximum possible intensity of a supermagnetic storm
  • 3.3.2. Occurrence probability of carrington-type superstorms
  • 4. Nowcasting and Short-Term Forecasting of Supermagnetic Storm
  • 5. Conclusions
  • Glossary
  • References
  • Further Reading
  • Chapter 8: An Overview of Science Challenges Pertaining to Our Understanding of Extreme Geomagnetically Induced Currents
  • 1. Introduction
  • 1.1. Geomagnetic Storms at Earth
  • 1.2. Basic Theory of GICs
  • 2. Impact on Ground Systems
  • 2.1. Electrical Power Systems
  • 2.2. Oil and Gas Pipelines
  • 2.3. Other Systems
  • 3. U.S. Federal Actions Relating to GICs
  • 4. Key Science Challenges
  • 4.1. Extreme Drivers
  • 4.2. Modeling Extremes
  • 4.3. Defining Extremes
  • 5. Concluding Remarks
  • References
  • Chapter 9: Extreme-Event Geoelectric Hazard Maps
  • 1. Introduction
  • 2. Defining the Hazard
  • 3. Direct Geoelectric Monitoring
  • 4. Induction in a Conducting Earth
  • 5. Magnetic Observatory Data
  • 6. Geomagnetic Waveform Time Series
  • 7. Observatory Magnetic Hazard Functions
  • 8. Global Magnetic Hazard Functions
  • 9. Magnetotelluric Impedances
  • 10. Geological Interpretations
  • 11. Geoelectric Hazard Maps
  • 12. Discussion
  • References
  • Chapter 10: Geomagnetic Storms: First-Principles Models for Extreme Geospace Environment
  • 1. Introduction
  • 2. Overview of First-Principles Magnetospheric Models
  • 3. Modeling of Extreme and Intense Geomagnetic Storms
  • 3.1. Modeling of Carrington-Type Events
  • 3.2. Modeling of Radiation Belt Response for Extreme Storms
  • 4. An Example: Geomagnetic Storm of June 22-23, 2015
  • 4.1. The Model Run Setup
  • 4.2. The Results for Pressure and Current Distribution
  • 4.3. Comparison With Ground-Based Magnetometers and Satellite Data
  • 5. Role of the Ring Current Plasma in Generation of dB/dt and Variability of Electric Fields and FACs at Low Latitudes
  • 6. Challenges and Future Directions
  • 7. Conclusions
  • References
  • Chapter 11: Empirical Modeling of Extreme Events: Storm-Time Geomagnetic Field, Electric Current, and Pressure Dist
  • 1. Introduction
  • 2. Recent Advances in Empirical Geomagnetic Field Modeling
  • 2.1. Model Structure
  • 2.2. Data Binning
  • 2.3. Model Database
  • 3. March 2015 Storm
  • 4. Bastille Day Storm
  • 5. Conclusion
  • References
  • Part 4: Plasma and Radiation Environment
  • Chapter 12: Extreme Space Weather Events: A GOES Perspective
  • 1. Introduction
  • 2. GOES Extreme Space Weather Events
  • 3. GOES Extreme Events, Cases 1-12
  • 4. Concluding Remarks
  • References
  • Chapter 13: Near-Earth Radiation Environment for Extreme Solar and Geomagnetic Conditions
  • 1. Introduction
  • 2. Solar Energetic Particles in Space
  • 2.1. Concept of Extreme SEP Events
  • 2.2. Largest SEP Events and Distribution Function
  • 2.3. Solar Cosmic Rays: Penetration Boundary and Changes of Cutoff Rigidities
  • 3. GCR Modulation Over the Solar Cycles
  • 4. The Inner Proton Radiation Belt Variations Over Solar Cycles
  • 5. Radiation Environment for Crewed Orbital Stations
  • 6. Conclusions
  • References
  • Further Reading
  • Chapter 14: Magnetospheric ``Killer´´ Relativistic Electron Dropouts (REDs) and Repopulation: A Cyclical
  • 1. Introduction
  • 2. Solar Wind/Interplanetary Driving and Geomagnetic Characteristics: A Schematic
  • 3. Relativistic Electron Dropout and Acceleration: An Example
  • 4. Solar Cycle Phase Dependence of Electron Acceleration
  • 5. Maximum Energy-Level Dependence of Electron Acceleration
  • 6. HILDCAA Duration Dependence of Electron Acceleration
  • 7. Are CIR Storms Important?
  • 8. Relativistic Electron Variation During ICME Magnetic Storms
  • 8.1. Fast Shock, Sheath, and First Magnetic Storm
  • 8.2. Magnetic Cloud (MC) and Second and Third Storms
  • 8.3. HSS and Storm Recovery Phase
  • 8.4. Relativistic Electron Flux Variability During the Complex Interplanetary Event: Shock Effects
  • 8.5. Electron Acceleration
  • 9. Conclusions
  • References
  • Chapter 15: Extreme Space Weather Spacecraft Surface Charging and Arcing Effects
  • 1. Limits of Discussion
  • 2. Cause of Arcing
  • 3. Effects of Arcing
  • 4. Physics of Charging in Geosynchronous Earth Orbit
  • 5. The Spacecraft Charging Equation
  • 6. What Are the Worst Spacecraft Charging Events?
  • 7. Limits on Spacecraft Charging Events
  • 8. The Galaxy 15 Failure
  • 9. Conclusion
  • References
  • Chapter 16: Deep Dielectric Charging and Spacecraft Anomalies
  • 1. Introduction
  • 2. What Is Deep Dielectric Charging?
  • 2.1. The Roles of Ions
  • 3. Space Environments
  • 3.1. Trapped Radiation
  • 3.2. Temporal Variation of the Radiation Belts
  • 3.3. Relative Role of Electrons and Ions
  • 4. Deep Dielectric Charging and Discharging
  • 5. Dependence from Geomagnetic Indices: Dst and Kp Index
  • 6. Delay Time
  • 7. Discharge Event Parameters
  • 8. Spacecraft Design Guidelines
  • 9. Conclusion
  • References
  • Chapter 17: Solar Particle Events and Human Deep Space Exploration: Measurements and Considerations
  • 1. Radiation in Space and Health Risks for Astronauts
  • 2. GCR vs SPEs: Different Approaches for Risk Mitigation
  • 3. SPEs as Measured in a Space Habitat (International Space Station)
  • 4. The ALTEA Detector Onboard the ISS
  • 5. Results From SPE Measurements in the ISS
  • 5.1. The December 13, 2006, SPE
  • 5.2. The March 7, 2012, SPE
  • 5.3. The May 17, 2012, SPE
  • 6. Final Remarks
  • 6.1. Forecasting at 1 AU
  • 6.2. Forecasting at Space Habitat
  • 6.3. Radiation on Mars
  • 6.4. Countermeasures
  • 7. Conclusions
  • References
  • Chapter 18: Characterizing the Variation in Atmospheric Radiation at Aviation Altitudes
  • 1. Radiation Sources and Their Effects on Aviation
  • 2. Status of Models
  • 3. Status of Measurements
  • 4. Status of Monitoring for Extreme Conditions
  • 5. Classification of Aviation-Relevant Extreme Space Weather Radiation Events
  • 6. Example of an Extreme Event
  • 7. Conclusion
  • References
  • Chapter 19: High-Energy Transient Luminous Atmospheric Phenomena: The Potential Danger for Suborbital Flights
  • 1. Introduction
  • 2. Phenomenology of TLEs
  • 3. Experimental Data on TLE from UVRIR Detector on Board Moscow State University Satellites
  • 3.1. TLE Types Measured by UVRIR Detector
  • 3.2. TLE Distribution Over Photon Numbers
  • 3.3. Series of TLE
  • 4. Discussion
  • 4.1. Overview of TLE Models and Relation to Other Space Weather Phenomena
  • 4.2. TLE Energy Deposition
  • 4.3. TLEs as a Radiation Hazard
  • 5. Results and Conclusions
  • References
  • Further Reading
  • Part 5: Ionospheric/Thermospheric Effects and Impacts
  • Chapter 20: Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms*
  • 1. Historical Background
  • 2. Electric Fields and the Creation of Large TEC Increases
  • 2.1. Equatorial Plasma Irregularities and Scintillation
  • 3. The Role of Ion-Neutral Coupling
  • 3.1. Buoyancy (Gravity) Waves
  • 4. Extreme Nighttime Responses Following the Storm Main Phase (Florida Effect)
  • 5. Conclusions and Future Outlook
  • References
  • Further Reading
  • Chapter 21: How Might the Thermosphere and Ionosphere React to an Extreme Space Weather Event?
  • 1. Introduction
  • 2. Effects of Solar EUV and UV Radiation
  • 3. Effect of an Extreme Solar Flare
  • 4. Effects of an Extreme CME Driving a Geomagnetic Storm
  • 4.1. Defining the Drivers
  • 4.2. Neutral Atmosphere Response to an Extreme Geomagnetic Storm
  • 4.3. Ionospheric Response to an Extreme Geomagnetic Storm
  • 5. Summary and Conclusions
  • References
  • Further Reading
  • Chapter 22: The Effect of Solar Radio Bursts on GNSS Signals
  • 1. Introduction
  • 1.1. The Solar Radio Burst (SRB)
  • 1.2. The Global Navigation Satellite System (GNSS)
  • 2. Review the Effect of SRBs on GNSS Signals
  • 2.1. Reduction of Signal-to-Noise Ratio (SNR)
  • 2.2. Signal Loss of Lock (LOL)
  • 2.3. Decrease of Positioning Precision
  • 2.4. Effect on Space-Based GNSS
  • 2.5. Threshold Value of SRBs Affecting GNSS
  • 3. Extreme SRB Case on December 6, 2006
  • 4. Discussions
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter 23: Extreme Ionospheric Storms and Their Effects on GPS Systems
  • 1. Introduction
  • 2. Global Positioning System
  • 3. The Ionosphere
  • 3.1. Total Electron Content
  • 3.2. Low-Latitude Scintillation
  • 3.3. High-Latitude Scintillation
  • 4. Ionospheric Structures Evident in TEC Data
  • 4.1. Storm Enhanced Densities, Patches and Blobs
  • 4.2. Traveling Ionospheric Disturbances
  • 5. Event Studies for Large Ionospheric Storms
  • 5.1. October 2003
  • 5.2. November 2003
  • 5.3. November 2004
  • 6. System Effects of Ionospheric Storms
  • 7. Discussion
  • References
  • Further Reading
  • Chapter 24: Recent Geoeffective Space Weather Events and Technological System Impacts
  • 1. Introduction
  • 2. Recent Events: Overview
  • 3. Solar Origins of Activity
  • 4. Geospace Response
  • 4.1. Energetic Particles and Magnetic Field Observations at GEO
  • 4.2. Geosynchronous Magnetopause Crossings
  • 4.3. Radiation Environment at GEO
  • 4.4. Radiation Environment at LEO
  • 5. Ionospheric Effects
  • 6. System Impacts
  • 6.1. Technological System Impacts
  • 6.2. Aviation Navigation System Impacts
  • 7. Summary
  • Acknowledgments
  • References
  • Further Reading
  • Chapter 25: Extreme Space Weather in Time: Effects on Earth
  • 1. Introduction
  • 2. Space Weather Events From the Current Sun
  • 3. Space Weather Events From the Young Sun
  • 3.1. Solar Superflares and CMEs
  • 3.2. The Young Sun's Wind
  • 4. 3D MHD Model of Super-CME Interaction With the Early Earth
  • 4.1. Effects of CMEs on the Magnetosphere of the Early Earth
  • 4.2. Effects of XUV Flux on Atmospheric Escape From the Young Earth
  • 5. Space Weather as a Factor of Habitability
  • 6. Conclusions
  • Acknowledgments
  • References
  • Further Reading
  • Part 6: Dealing With the Space Weather
  • Chapter 26: Dealing With Space Weather: The Canadian Experience
  • 1. Introduction
  • 2. High-Frequency Radio Communications
  • 3. Satellites
  • 4. Ground Systems
  • 5. Surveying and Navigation
  • 6. Concluding Remarks
  • Acknowledgments
  • References
  • Further Reading
  • Chapter 27: Space Weather: What are Policymakers Seeking?
  • 1. Introduction
  • 2. Key Concepts
  • 2.1. Space Weather as a Natural Hazard
  • 2.2. Policy Responses to Natural Hazards
  • 2.3. The Importance of Science
  • 3. How to Assess Extreme Risks
  • 4. What Knowledge is Needed in the Future
  • 4.1. The Need for Data
  • 4.2. The Need to Learn From Meteorology
  • 4.3. The Need for Better Science and Better Models
  • References
  • Further Reading
  • Chapter 28: Extreme Space Weather and Emergency Management
  • 1. Why Emergency Managers Care
  • 2. Understanding the Risks of Extreme Solar Events
  • 2.1. The Hazard
  • 2.1.1. Radio Blackouts
  • 2.1.2. Solar Radiation Storm
  • 2.1.3. Geomagnetic Storms
  • 3. What Emergency Managers Need From Researchers and Engineers
  • 3.1. Plain Language
  • 3.2. Expert Analysis Available on Demand
  • 3.3. Sharable Information
  • 3.4. Improved Forecast Products
  • 3.4.1. Solar Flare Forecast Product
  • 3.4.2. Interplanetary Magnetic Field Forecast Products
  • 3.4.3. Earth Environment Forecast and Impact Products
  • 4. Conclusion
  • References
  • Further Reading
  • Chapter 29: The Social and Economic Impacts of Moderate and Severe Space Weather
  • 1. Introduction
  • 2. Approach
  • 3. Results
  • 3.1. Electric Power
  • 3.2. Aviation
  • 3.3. Satellites
  • 3.4. GNSS Users
  • 4. Next Steps and Concluding Remarks
  • References
  • Further Reading
  • Chapter 30: Severe Space Weather Events in the Australian Context
  • 1. Introduction and Concept Development
  • 2. The Nature of Severe Events and the Regional Context
  • 3. The Severe Event Service
  • 4. Policy Background
  • 5. Stakeholder Technology Groups
  • 6. Conclusion
  • References
  • Chapter 31: Extreme Space Weather Research in Japan
  • 1. Overview and History of Operational Space Weather Forecast
  • 2. Action to Telecommunications and Satellite Positioning
  • 3. Action to Aviation
  • 4. Action to Satellite Saving
  • 5. Action to GIC
  • 6. Introduction of PSTEP
  • References
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

174,93 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen