Abbildung von: Rare Earths-Transition Metals-Boron Compounds - Springer

Rare Earths-Transition Metals-Boron Compounds

Basic Properties to Technical Applications
Emil Burzo(Autor*in)
Springer (Verlag)
Erschienen am 10. Juni 2023
VI, 539 Seiten
E-Book
PDF mit Wasserzeichen-DRM
978-3-030-99245-3 (ISBN)
160,49 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Wasserzeichen-DRM
E-Book Einzellizenz
Als Download verfügbar
This book presents advances in the field of rare-earth (R) - transition metal (M) - boron compounds with extensive references. Since titanium and scandium do not form compounds with rare-earths, the Sc/Ti-M-B series are additionally presented. In each chapter the crystal structures, the complex physical properties as determined from neutron diffraction, magnetic measurements, resonance studies, transport properties and band structure calculations are critical analyzed. The models used in describing the experimental evidence are also presented. Tables with the main properties of the R-M-B compounds are given and representative data are illustrated in figures. In this way, the book provides state-of-the art knowledge and a valuable analysis of up-to-date results in the field. The technical applications, as permanent magnets, thermoelectric and magnetocaloric devices, hydrogen storage are also highlighted along with the authors insights into future directions in the field. The book is of interest for scientists involved in the development of the field as well as those working in the technical uses of rare-earth compounds.
Auflage
1st ed. 2023
Sprache
Englisch
Verlagsort
Cham
Schweiz
Verlagsgruppe
Springer International Publishing
Illustrationen
54
24 farbige Abbildungen, 54 s/w Abbildungen
VI, 539 p. 78 illus., 24 illus. in color.
Dateigröße
11,44 MB
ISBN-13
978-3-030-99245-3 (9783030992453)
DOI
10.1007/978-3-030-99245-3
Schlagworte
Schweitzer Klassifikation
Thema Klassifikation
DNB DDC Sachgruppen
BIC 2 Klassifikation
BISAC Klassifikation
Warengruppensystematik 2.0
Emil Burzo obtained his diploma as engineer at the Technical University of Cluj-Napoca, in physics at Babes-Bolyai University Cluj-Napoca and PhD Thesis at University Timisoara (1970). After working a period as engineer at Carbochim factory, started the scientific activity at Babes-Bolyai University followed by Institute of Atomic Physics (Bucharest). Then returned at Babes-Bolyai University (1990) as professor and dean of Faculty of Physics. Worked as associate professor at Carnegie Mellon University and University of Grenoble -Laboratories Louis Néel. Presented lectures at more than 30 universities from Europe, USA, China or Israel, as well as invited lectures at International Conferences. The scientific activity was directed on metallic alloys and compounds, perovskites, oxide glasses and materials etc., mainly in connection with their magnetic properties. The scientific results were published in more than 500 papers in international journals and 24 books in Springer, North Holland, Institute of Physics (GB) or Romanian Academy Publishing House. For their scientific results received awards and distinctions both of national and international level.
1. Introduction

2. Sc-M-B ternary compounds

2.1 Crystal structures

2.2 Magnetic properties

3. R-Ti-B and Ti-M-B compounds

3.1 Introduction

3.2 Crystal structures

3.2.1 Borides derived from TiCo5B2-type structure

3.2.2 Borides containing ladders of 3d transition metals

3.2.3 Titanium borides having B4 units

3.2.4 Titanium borides having double perovskite-type structure

3.2.5 Borides having Cr23C6-type structure

3.3 Magnetic properties

4. R-V-B compounds

5. R-Cr-B compounds

5.1 Phase diagrams and crystal structures

5.2 Magnetic and related properties

6. R-Mn-B compounds

6.1 Crystal structures

6.2 Magnetic and related properties

7. R-Fe-B compounds

7.1 Phase diagrams

7.2 RFeB4 and Lu2FeB6 compounds

7.2.1 Crystal structures

7.2.2 Magnetic properties

7.3 R3FeB7 compounds

7.4 R5Fe2B6 compounds

7.4.1 Crystal structures

7.4.2 Magnetic and related properties

7.5 R1+eFe4B4 compounds

7.5.1 Crystal structures

7.5.2 Magnetic and related properties

7.6 RFe2B2 compounds

7.7 RFe12B6 compounds

7.7.1 Crystal structures

7.7.2 Magnetic and related properties

7.8 RFe4B compounds

7.8.1 Crystal structures

7.8.2 Magnetic and related properties

7.9 Metastable R-Fe-B compounds

7.9.1 Introduction

7.9.2 R2Fe23B3 metastable compounds

7.9.3 R3Fe62B14 metastable compounds

7.9.4 R2Fe17Bx metastable compounds

7.10 R2Fe14B compounds

7.10.1 Introduction

7.10.2 Crystal structures

7.10.3 Magnetic and related properties

8. R-Co-B compounds

8.1 Phase diagrams

8.2 Gd-Co-B compounds having Co/B = 1 ratio

8.2.1 Crystal structures

8.2.2 Magnetic and related properties

8.3 RCo3B2 compounds

8.3.1 Crystal structures

8.3.2 Magnetic properties

8.4 R2Co7B3 compounds

8.4.1 Crystal structures

8.4.2 Magnetic and related properties

8.5 R3Co11B4 compounds

8.5.1 Crystal structures

8.5.2 Magnetic properties

8.6 RCo4B compounds

8.6.1 Crystal structures

8.6.2 Magnetic properties

8.7 Rm+nCo5m+nB2n compounds (m = 2, n = 1), (m = 2, n = 3) and (m = 3, n = 2)

8.7.1 Crystal structures

8.7.2 Magnetic properties

8.8 RCo12B6 compounds

8.8.1 Crystal structures

8.8.2 Magnetic properties

8.9 R2Co14B compounds

8.9.1 Crystal structures

8.9.2 Magnetic properties

8.9.3 NMR and NGR data

9. R-Ni-B compounds

9.1 Phase diagrams

9.2 R-Ni-B compounds with high boron content

9.2.1 Crystal structures

9.2.2 Magnetic properties

9.3 R-Ni-B multi phases and amorphous alloys

9.4 RNi2B2 and RNi2B2C compounds (part A)

9.4a Crystal structures of RNi2B2 and RNi2B2 compounds. The physical properties of RNi2B2C compounds with R = La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, Lu and Y

9.4a.1 Introduction

9.4a.2 Crystal structures and elastic properties

9.4a.3 Magnetic and related properties

9.4a.3.1 Non superconducting borocarbides

9.4a.3.1.1 LaNi2B2C borocarbide

9.4a.3.1.2 CeNi2B2C borocarbide

9.4a.3.1.3 PrNi2B2C borocarbide

9.4a.3.1.4 NdNi2B2C borocarbide

9.4a.3.1.5 SmNi2B2C borocarbide

9.4a.3.1.6 GdNi2B2C borocarbide

9.4a.3.1.7 TbNi2B2C borocarbide

9.4a.3.2 Heavy fermion YbNi2B2C borocarbide

9.4.3.3 Superconducting RNi2B2C with R = Lu, Y borocarbides

9.4 RNi2B2 and RNi2B2C compounds (part B)

9.4b Magnetic ordered and superconducting borocarbides

9.4b.1 Introduction

9.4b.2 DyNi2B2C borocarbide

9.4b.3 HoNi2B2C borocarbide

9.4b.4 ErNi2B2C borocarbide

9.4b.5 TmNi2B2C borocarbide

9.5 RNi10B5, R3Ni19B10, R2Ni2B, RNi12B6 and R2Ni15B9 compounds

9.5.1 Crystal structures

9.5.2 Magnetic properties

9.6 R2Ni21B6, R2Ni15B6, RNi7B3 and RNi6.5B3 compounds

9.6.1 Crystal structures

9.6.2 Magnetic properties

9.7 R3Ni7B2 compounds

9.8 Rm+nNi5m+3mB2n series with (m = 1, n=1) and (m = 2, n = 1)

9.8.1 Crystal structures

9.8.2 Magnetic and related properties

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer  E-Book Hilfe.