Polymer Optical Fibres

Fibre Types, Materials, Fabrication, Characterisation and Applications
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 25. August 2016
  • |
  • 436 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100056-4 (ISBN)
 

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability.


  • Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF
  • Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology
  • Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles
  • Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion
  • Englisch
  • Cambridge
Elsevier Science
  • 16,54 MB
978-0-08-100056-4 (9780081000564)
0081000561 (0081000561)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Polymer Optical Fibres
  • Related titles
  • Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterisation and Applications
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Electronic and Optical Materials
  • Foreword
  • Yet another book about polymer-optical fibres?
  • The right book at the right time
  • 1 - Introduction - why we made this book
  • 1.1 Historical background
  • 1.1.1 Development of optical communication
  • 1.1.2 Development of glass-optical fibres
  • 1.1.3 Development of polymer-optical fibres
  • 1.2 Why we made this book
  • 1.3 Summary
  • References
  • 2 - Basics of light guidance
  • 2.1 Introduction and overview
  • 2.1.1 Unit system and conventions
  • 2.1.2 Spectrum of electromagnetic waves
  • 2.2 Fundamentals of electromagnetic waves
  • 2.2.1 Maxwell's equations and wave equations
  • 2.2.1.1 Maxwell's equations
  • 2.2.1.2 Wave equations
  • 2.2.2 Energy flow in media
  • 2.2.2.1 Poynting vector
  • 2.2.2.2 Speed of light
  • 2.2.2.3 Phase and group velocity
  • 2.3 Propagation of electromagnetic waves in transparent media
  • 2.3.1 Oscillator model and refractive index
  • 2.3.1.1 Complexity of a quantum-mechanical approach
  • 2.3.1.2 Harmonic oscillator model and wavelength dependency of refractive index
  • 2.3.2 Scattering phenomena
  • 2.3.2.1 Mie scattering
  • 2.3.2.2 Rayleigh scattering
  • 2.4 Boundary surface phenomena and geometrical optics
  • 2.4.1 Reflection and transmission on optical boundary surfaces
  • 2.4.1.1 Snell's law and reflection of light
  • 2.4.1.2 Fresnel equations
  • 2.4.2 Special cases of optical transition
  • 2.4.2.1 Total internal reflection
  • 2.4.2.2 Brewster angle
  • 2.4.3 Superposition of electromagnetic waves
  • 2.4.3.1 Interference
  • 2.4.3.2 Coherence
  • 2.4.3.3 Antireflective systems
  • 2.4.4 Geometrical optics
  • 2.4.4.1 Principle of geometrical optics
  • 2.4.4.2 Principle of Fermat
  • 2.5 Anisotropic effects
  • 2.5.1 Anisotropic effects and their application
  • 2.5.1.1 Polarisation
  • Linearly polarised light
  • Nonlinearly polarised light
  • 2.5.1.2 Physical basics
  • Optically isotropic materials
  • Crystalline solids with one optical axis
  • Crystalline solids with two optical axes
  • 2.5.1.3 Applications
  • 2.6 Chromatic dispersion in real media
  • 2.6.1 Physical basics
  • 2.6.2 Effects in real media
  • 2.6.2.1 Modal dispersion
  • 2.6.2.2 Chromatic dispersion
  • 2.6.2.3 Polarisation-mode dispersion
  • 2.7 Summary
  • Sources of other information and advice
  • References
  • 3 - Basic principles of optical fibres
  • 3.1 Overview
  • 3.2 Basic principle
  • 3.2.1 Numerical aperture
  • 3.2.2 Refractive-index profile
  • 3.2.2.1 Step-index (SI) profile
  • 3.2.2.2 Graded-index profile
  • 3.3 Ray-theory description
  • 3.3.1 Rays in SI fibres
  • 3.3.2 Rays in fibres with graded or arbitrary refractive-index profiles
  • 3.3.3 Caustics
  • 3.4 Wave theory description
  • 3.4.1 Linearly polarised modes
  • 3.4.2 Fibre parameter V and number of modes
  • 3.4.3 Single-mode fibre
  • 3.4.4 Excitation of modes
  • 3.4.5 Modal delay
  • 3.5 Mode coupling
  • 3.5.1 Power-flow equation
  • 3.5.1.1 Time-independent power-flow equation
  • 3.5.1.2 Fokker-Planck equation
  • 3.5.1.3 Time-dependent power-flow equation
  • 3.5.2 Coupled-wave equations
  • 3.5.3 Coupled-power equations
  • 3.5.4 Mode-coupling matrix
  • 3.6 Launching conditions
  • 3.6.1 Uniform mode distribution
  • 3.6.2 Equilibrium mode distribution (EMD)
  • 3.7 Dispersion in optical fibres
  • 3.7.1 Chromatic dispersion
  • 3.7.2 Modal dispersion
  • 3.7.2.1 Impulse response
  • 3.7.3 Pulse broadening
  • 3.7.3.1 Bandwidth and frequency response
  • 3.7.3.2 Bandwidth-length product
  • 3.7.3.3 Joint effect of chromatic and modal dispersion
  • 3.8 Losses in optical fibres
  • 3.8.1 Absorption losses
  • 3.8.1.1 Electron transitions
  • 3.8.1.2 Molecular vibration
  • 3.8.1.3 Extrinsic absorption effects
  • 3.8.2 Scattering losses
  • 3.8.2.1 Rayleigh scattering
  • 3.8.2.2 Quasi-extrinsic scattering effects
  • 3.8.2.3 Extrinsic bulk scattering effects
  • 3.8.2.4 Extrinsic interface scattering effect
  • 3.8.2.5 Radiation due to longitudinal variation of fibre properties and mode-coupling
  • 3.8.2.6 Ultimate loss limits
  • 3.8.4 Use-conditioned losses
  • 3.8.4.1 Bending losses
  • 3.8.4.2 Stress-related losses
  • 3.8.4.3 Losses due to ageing
  • 3.9 Nonlinear effects
  • 3.9.1 Kerr effect
  • 3.9.2 Brillouin scattering
  • 3.9.3 Raman scattering
  • 3.10 Basic fibre types
  • 3.10.1 Step-index profile polymer-optical fibres (SI-POFs)
  • 3.10.1.1 Modal dispersion and bandwidth in step-index fibres
  • 3.10.2 Low numerical aperture POFs
  • 3.10.3 Double SI-POFs
  • 3.10.4 Multi SI-POFs
  • 3.10.5 Graded-index profile polymer optical fibres (GI-POFs)
  • 3.10.5.1 Modal dispersion and bandwidth in GI fibres
  • 3.11 Modelling and simulation
  • 3.11.1 Wave optics versus ray-tracing
  • 3.11.2 Ray-tracing methods for scattering
  • 3.11.2.1 Power calculation
  • 3.11.3 Simulation of volume scattering
  • 3.11.4 Simulation of interfacial scattering
  • 3.11.5 Path calculation
  • 3.12 Summary
  • Sources of other information and advice
  • References
  • 4 - Special fibres and components
  • 4.1 Multi-core fibres
  • 4.2 Single-mode polymer-optical fibres
  • 4.3 Microstructured polymer-optical fibres
  • 4.3.1 Advantages of microstructured polymer-optical fibres compared to microstructured glass fibres
  • 4.3.2 Types of microstructured polymer-optical fibres
  • 4.3.2.1 Effective refractive-index profile
  • 4.3.2.2 Photonic band-gap fibres
  • 4.3.2.3 Bragg fibres
  • 4.3.2.4 Hole-assisted fibres
  • 4.3.3 Fabrication methods for microstructured polymer-optical fibres
  • 4.3.3.1 Stacking technique
  • 4.3.3.2 Drilling technique
  • 4.3.3.3 Preform extrusion
  • 4.3.3.4 Casting of preforms
  • 4.4 Side-emitting polymer optical fibres
  • 4.5 Imaging fibres
  • 4.6 Tubular fibres
  • 4.6.1 Light-guiding in tubular fibres
  • 4.6.2 Optimal design of tubular fibres
  • 4.6.3 Materials for tubular fibres
  • 4.6.4 Summary and state of the art of tubular fibres
  • 4.7 Fibre gratings
  • 4.7.1 Theoretical background: Coupled mode theory
  • 4.7.1.1 Co-directional coupling
  • 4.7.1.2 Counter-directional coupling
  • 4.7.2 Short-period gratings
  • 4.7.3 Transmission gratings (long-period gratings)
  • 4.7.4 Fabrication of fibre gratings
  • 4.7.4.1 Refractive-index modification in glass-optical fibres
  • 4.7.4.2 Refractive-index modification in polymer optical fibres
  • 4.7.4.3 Particular fabrication methods for fibre gratings
  • 4.7.5 Classification of fibre-grating structures
  • 4.7.5.1 Type-I
  • 4.7.5.2 Type-IA
  • 4.7.5.3 Type-II
  • 4.7.5.4 Type-IIA
  • 4.7.6 Fibre Bragg gratings in polymer-optical fibres
  • 4.8 Summary
  • Sources of other information and advice
  • References
  • 5 - Materials, chemical properties and analysis
  • 5.1 Preamble
  • 5.2 Materials for optical fibres
  • 5.2.1 Polymers
  • 5.2.1.1 Polymer structure
  • 5.2.1.2 Poly-methyl-methacrylate
  • 5.2.1.3 Deuterated polymers
  • 5.2.1.4 Fluorinated polymers
  • 5.2.1.5 Chlorinated polymers
  • 5.2.1.6 Poly-styrene
  • 5.2.1.7 Further polymer types
  • 5.2.1.8 Polycarbonates
  • 5.2.1.9 Cyclo olefin copolymers
  • 5.2.1.10 Silicones
  • 5.2.1.11 Thermoplastic poly-urethane elastomers
  • 5.2.1.12 Prospective material developments
  • 5.2.1.13 Summary
  • 5.3 Chemical analytics
  • 5.3.1 Monomer analytics
  • 5.3.2 Polymer analytics
  • 5.3.2.1 Molecular weight
  • 5.3.2.2 Gel permeation chromatography
  • 5.3.2.3 Thermal analysis
  • 5.3.2.4 Differential scanning calorimetry
  • 5.3.2.5 Thermogravimetric analysis
  • 5.4 Ageing/non-mechanical load
  • 5.4.1 Temperature and humidity
  • 5.4.2 UV light
  • Further reading
  • References
  • 6 - Fabrication techniques for polymer optical fibres
  • 6.1 Introduction and overview
  • 6.2 Discontinuous manufacturing techniques for polymer optical fibres
  • 6.2.1 Preform production
  • 6.2.2 Heat-drawing process
  • 6.2.3 Batch extrusion
  • 6.3 Continuous manufacturing techniques for polymer optical fibres
  • 6.3.1 Continuous extrusion
  • 6.3.2 Photochemical polymerization
  • 6.3.3 Co-extrusion
  • 6.3.4 Dry spinning
  • 6.3.5 Melt spinning
  • 6.3.6 Modified melt spinning with subsequent cooling in a water quench
  • References
  • 7 - Mechanical properties of polymer-optical fibres
  • 7.1 Introduction
  • 7.2 Parameters
  • 7.2.1 Stress and strain
  • 7.2.2 Strength
  • 7.2.3 Elastic modulus
  • 7.2.4 Stress-strain curve
  • 7.2.5 Yarn count
  • 7.2.6 Yarn twist
  • 7.3 Resultant fibre properties for polymer-optical fibres
  • 7.4 Material models for thermoplastic polymers
  • 7.4.1 Maxwell model
  • 7.4.2 Kelvin-Voigt model
  • 7.4.3 Zener model
  • 7.4.4 Burgers model
  • 7.5 Weibull plot
  • Acknowledgements
  • References
  • 8 - Polymer-optical fibres for data transmission
  • 8.1 Introduction and overview of the chapter
  • 8.1.1 Historical perspective
  • 8.1.2 Electrical-to-optical and optical-to-electrical conversion
  • 8.2 Basics of data transfer
  • 8.2.1 Digital communications
  • 8.2.2 Channel coding (error coding)
  • 8.2.3 Digital modulation
  • 8.2.4 Additive white Gaussian noise channel
  • 8.2.5 Dispersive channel
  • 8.2.5.1 Non-distorting channel
  • 8.2.6 Inter-symbol interference and Nyquist criterion
  • 8.2.7 Optimum receive filter
  • 8.2.8 Detection
  • 8.2.9 Analog and digital systems interface
  • 8.3 Optical transmitters
  • 8.3.1 General transmitter design goals
  • 8.3.1.1 Information theoretic demands
  • 8.3.1.2 Physical design goals
  • 8.3.2 Principles of light generation in optical transmitters
  • 8.3.2.1 Spontaneous emission
  • 8.3.2.2 Stimulated emission
  • 8.3.2.3 Non-radiative recombination/(re-)absorption
  • 8.3.3 Light generation with semiconductors
  • 8.3.3.1 Electrically controlled spontaneous emission
  • 8.3.3.2 Electrically controlled stimulated emission
  • 8.3.3.3 Choice of semiconductor material
  • 8.3.4 Light-emitting diodes
  • 8.3.4.1 Optical properties
  • 8.3.4.2 Modulation characteristics
  • 8.3.5 Resonant-cavity LEDs
  • 8.3.5.1 Design rules
  • 8.3.5.2 Optical properties
  • 8.3.5.3 Modulation characteristics
  • 8.3.5.4 Nonlinearities in E/O conversion of LEDs and RC-LEDs
  • 8.3.6 Semiconductor lasers
  • 8.3.6.1 Practical designs for semiconductor lasers
  • 8.3.6.2 Optical properties
  • 8.3.6.3 Modulation characteristics
  • 8.4 Optical receivers
  • 8.4.1 Pin photodiodes
  • 8.4.1.1 Basic principle
  • 8.4.1.2 Efficiency and responsivity
  • 8.4.1.3 Frequency response
  • 8.4.1.4 Parasitic effects
  • 8.4.1.5 Carrier drift
  • 8.4.1.6 Carrier diffusion
  • 8.4.1.7 Diffusion current in the p-layer at steady state
  • 8.4.1.8 Diffusion current in the n-layer at steady state
  • 8.4.1.9 Frequency response of the diffusion current
  • 8.4.2 Avalanche PDs
  • 8.4.3 Metal-Semiconductor-Metal PDs
  • 8.4.4 Optical receiver noise
  • 8.5 Polymer-optical fibres as optical transmission channel
  • 8.5.1 Attenuation
  • 8.5.2 Dispersion
  • 8.5.3 Simple model of the polymer-optical fibre transmission channel
  • 8.6 Modulation formats for polymer-optical fibre
  • 8.6.1 Non-return to zero
  • 8.6.1.1 Synchronisation
  • 8.6.2 Advanced modulation formats
  • 8.6.2.1 Pulse amplitude modulation
  • Optical modulation
  • 8.6.2.2 Carrierless amplitude phase
  • Spectral efficiency of PAM and CAP
  • 8.6.2.3 Discrete multitone
  • Bit and power loading
  • 8.6.2.4 Discrete multitone for intensity modulation and direct detection channels
  • Asymmetrically clipped optical (ACO)-OFDM
  • 8.6.3 Performance comparison of PAM, CAP and DMT in POF links
  • 8.6.3.1 Assessment of bit error ratio in AWGN channel
  • PAM and CAP
  • Discrete multitone
  • 8.6.3.2 Peak to average power ratio
  • 8.6.4 Equalisation
  • 8.6.4.1 Feedforward equaliser
  • 8.6.4.2 Zero-forcing criterion
  • 8.6.4.3 Minimum mean square error criterion
  • 8.6.4.4 Decision feedback equaliser
  • 8.6.4.5 Tomlinson-Harashima precoding
  • 8.6.4.6 Fractionally spaced equaliser
  • 8.6.4.7 Maximum likelihood sequence estimation
  • 8.6.4.8 Comparison of efficiency
  • 8.6.4.9 Immunity to nonlinear effects
  • 8.6.4.10 Digital signal processing effort
  • PAM
  • CAP
  • DMT
  • 8.6.4.11 Modulation performance summary
  • 8.7 POF Gbit/s transmission
  • 8.7.1 On-off keying transmission
  • 8.7.1.1 On-off keying transmission without DSP
  • 8.7.1.2 On-off keying transmission with DSP
  • 8.7.2 PAM and CAP transmission
  • 8.7.3 DMT transmission
  • 8.7.4 Wavelength division multiplexing
  • 8.7.5 Summary of the experiments
  • 8.8 Products and standards
  • References
  • 9 - Applications of polymer-optical fibres in sensor technology, lighting and further applications
  • 9.1 Effects of fibre properties on their application
  • 9.2 Fibre-optic sensor technology
  • 9.2.1 Sensor principles
  • 9.2.1.1 Fibre Bragg gratings
  • 9.2.1.2 Interferometry
  • 9.2.1.3 Evanescent wave absorption
  • 9.2.2 Estimation parameters
  • 9.2.2.1 Physical sensors
  • Temperature sensor
  • Humidity sensor
  • Strain and pressure sensors
  • Use case: sensor-integrated composites
  • 9.2.2.2 Biochemical sensors
  • Fibre Bragg grating
  • Evanescent wave
  • Surface plasmon resonance
  • 9.3 Lighting technology
  • 9.3.1 Decoupling along fibre length
  • 9.3.2 Decoupling by bending
  • 9.3.3 Deficits
  • 9.4 Polymer-optical fibres in smart textiles
  • 9.4.1 Introduction to smart textiles
  • 9.4.2 Optical fibre technology in smart textiles
  • 9.4.2.1 Data transmission in smart textiles
  • 9.4.2.2 Medical engineering
  • Use case: motion capture
  • Use case: respiration rate monitoring
  • Use case: cardiac activity assessment
  • Use case: actuators
  • 9.4.2.3 Luminous textiles and diffusers
  • Use case: ambient assisted living
  • Use case: fashion and design
  • 9.5 Future applications and trends
  • References
  • 10 - Polymer-optical fibre (POF) integration into textile fabric structures
  • 10.1 Textile fabric overview
  • 10.2 Woven fabrics
  • 10.2.1 Structure
  • 10.2.2 Manufacturing process
  • 10.2.3 Polymer-optical fibres in woven fabrics
  • 10.3 Knitted fabrics
  • 10.3.1 Structure
  • 10.3.2 Manufacturing process
  • 10.3.3 Polymer-optical fibre in knitted fabrics
  • 10.4 Braided fabrics
  • 10.4.1 Structure
  • 10.4.2 Manufacturing process
  • 10.4.3 Polymer-optical fibre in braided fabrics
  • 10.5 Multi non-crimp
  • 10.5.1 Structure
  • 10.5.2 Manufacturing process
  • 10.5.3 Polymer-optical fibre in multi non-crimp fabrics
  • References
  • 11 - Overview of the POF market
  • 11.1 Introduction and objectives
  • 11.2 Analysis of the polymer-optical fibre market
  • 11.2.1 Worldwide polymer-optical fibre market
  • 11.2.2 Polymer-optical fibre design types
  • 11.2.2.1 Standard fibres
  • 11.2.2.2 Planar waveguides
  • 11.2.2.3 Optical image guides
  • 11.2.2.4 Fluorescent and scintillating optical fibres
  • 11.2.3 Market by field of application
  • 11.2.3.1 Automotive
  • 11.2.3.2 Industrial
  • 11.2.3.3 Medical
  • 11.2.3.4 Military
  • 11.2.3.5 Office
  • 11.2.3.6 Home
  • 11.2.3.7 Architecture
  • 11.2.4 Geographical market
  • 11.3 Market by function
  • 11.3.1 Data transmission
  • 11.3.2 Sensors
  • 11.3.2.1 Change of the transmission or reflection characteristics of the medium between the transmitting and the receiving fibre [ZKZ07]
  • 11.3.2.2 Change of the actual length of the fibre
  • 11.3.2.3 Change of refractive index or optical length of the fibre
  • 11.3.2.4 Change of attenuation characteristics of the fibre
  • 11.3.2.5 Change of the numerical aperture of the fibre
  • 11.3.3 Illumination
  • 11.4 Market by fibre type
  • 11.4.1 Step-index polymer-optical fibres
  • 11.4.2 Graded-index polymer-optical fibres
  • 11.4.3 Multi-core polymer-optical fibres
  • 11.5 Manufacturers
  • 11.5.1 Japan
  • 11.5.1.1 Mitsubishi Rayon Co. Ltd.
  • 11.5.1.2 Asahi Kasei E-materials Co.
  • 11.5.1.3 Toray Industries, Inc.
  • 11.5.2 China
  • 11.5.2.1 Sichuan Huiyuan Plastic Optical Fiber Co., Ltd.
  • 11.5.2.2 Jiangxi Daishing POF Co., Ltd.
  • 11.5.3 France
  • 11.5.3.1 Apollinaire Technologie
  • 11.5.4 United States of America
  • 11.5.4.1 Chromis Fiberoptics, Inc.
  • 11.6 Summary and outlook
  • Abbreviations
  • Appendix
  • References
  • References
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok