Handbook on the Physics and Chemistry of Rare Earths

Including Actinides
 
 
North Holland (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. August 2016
  • |
  • 480 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-63705-5 (ISBN)
 

Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics.

The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements.

Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year.


  • Presents up-to-date overviews of new developments in the field of rare earths, covering both their physics and chemistry
  • Contains Individual chapters that are comprehensive and broad, with critical reviews
  • Provides contributions from highly experienced, invited experts
0168-1273
  • Englisch
  • Saint Louis
  • |
  • Niederlande
Elsevier Science
  • 24,95 MB
978-0-444-63705-5 (9780444637055)
0444637052 (0444637052)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Handbook on the Physics and Chemistry of Rare Earths: Volume 49 Including Actinides
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 278: Rare Earth-Doped Phosphors for White Light-Emitting Diodes
  • Chapter 279: REE Mineralogy and Resources
  • Chapter 280: Quantum Critical Matter and Phase Transitions in Rare Earths and Actinides
  • Chapter 281: Lanthanides in Luminescent Thermometry
  • Contents of Volumes 1-48
  • Index of Contents of Volumes 1-49
  • Chapter 278: Rare Earth-Doped Phosphors for White Light-Emitting Diodes
  • 1. Introduction
  • 2. What is LED Lighting?
  • 2.1. Principle of White Light Generation in LEDs
  • 2.2. Types of LED Lighting Devices
  • 2.3. Color Evaluation Indices
  • 2.3.1. Correlated Color Temperature
  • 2.3.2. Luminous Efficacy of Radiation
  • 2.3.3. Color Rendering Index
  • 3. Phosphor Requirements for LED Lighting
  • 3.1. Features of Rare Earth Ions with Respect to Luminescence
  • 3.1.1. Configurational Coordinate Diagram
  • 3.1.2. Electronic Transitions in Rare Earth Ions
  • 3.1.2.1. 4f-4f Transitions
  • 3.1.2.2. 4f-5d Transitions
  • 3.1.3. Energy Transfer
  • 3.2. Crystal-Field Effects on Luminescence
  • 4. Phosphor Materials for White LEDs
  • 4.1. Oxides
  • 4.1.1. Yellow-Emitting Phosphors
  • 4.1.1.1. Y3Al5O12:Ce3+ Phosphors
  • 4.1.1.2. Sr-Rich (Ba,Sr)2SiO4 Phosphors
  • 4.1.1.3. Sr3SiO5:Eu2+ Phosphors
  • 4.1.1.4. Li2SrSiO4:Eu2+ Phosphors
  • 4.1.1.5. Ba3Sc4O9:Ce3+ Phosphors
  • 4.1.2. Green-Emitting Phosphors
  • 4.1.2.1. Ca3Sc2Si3O12:Ce3+ Phosphors
  • 4.1.2.2. CaSc2O4:Ce3+ Phosphors
  • 4.1.2.3. Ba2MgSi2O7:Eu2+ Phosphors
  • 4.1.2.4. Ba9Sc2Si6O24:Eu2+ Phosphor
  • 4.1.3. Red-Emitting Phosphors
  • 4.1.3.1. Ca2SiO4:Eu2+ Phosphors
  • 4.1.3.2. Olivine-Type NaMgPO4:Eu2+ Phosphors
  • 4.2. (Oxy)nitrides
  • 4.2.1. Yellow-Emitting Phosphors
  • 4.2.1.1. Ca-a-SiAlON:Eu2+ Phosphors
  • 4.2.1.2. CaAlSiN3:Ce3+ Phosphors
  • 4.2.1.3. La3Si6N11:Ce3+ Phosphors
  • 4.2.2. Blue-Emitting Phosphors
  • 4.2.2.1. Y2Si3O3N4:Ce3+ Phosphors
  • 4.2.3. Green-Emitting Phosphors
  • 4.2.3.1. ß-SiAlON:Eu2+ Phosphors
  • 4.2.3.2. AESi2O2N2:Eu2+ (AE=Ca, Sr, and Ba) Phosphors
  • 4.2.3.3. Y4Si2O7N2:Ce3+ Phosphors
  • 4.2.4. Red-Emitting Phosphors
  • 4.2.4.1. CaAlSiN3:Eu2+ Phosphors
  • 4.2.4.2. AE2Si5N8:Eu2+ (AE=Ca, Sr, and Ba) Phosphors
  • 4.2.4.3. SrAlSi4N7:Eu2+ Phosphors
  • 4.3. Sulfides and Oxysulfides
  • 4.3.1. AES:Eu2+ (AE=Ca and Sr) Phosphors
  • 4.3.2. Sr8Al12O24S2:Eu2+ Phosphors
  • 4.3.3. AEGa2S4:Eu2+ (AE=Alkaline Earth) Phosphors
  • 4.4. Oxyhalides
  • 4.4.1. Oxychlorides
  • 4.4.1.1. Ca8Mg(SiO4)4Cl2:Eu2+ Phosphors
  • 4.4.1.2. Sr3Al2O5Cl2:Eu2+ Phosphors
  • 4.4.1.3. (Ca,Sr)7(SiO3)6Cl2:Eu2+ Phosphors
  • 4.4.2. Oxyfluorides
  • 4.4.2.1. (Sr,Ba)3AlO4F:Ce3+ Phosphors
  • 4.5. Energy Transfer Type Phosphors
  • 4.5.1. Y2Si3O3N4:Ce3+,Tb3+ Phosphors
  • 4.5.2. Ba3RNa(PO4)3F:Eu2+,Tb3+ (R=Rare Earth) Phosphors
  • 5. Synthesis Methods of White LED Phosphors
  • 5.1. Oxides
  • 5.1.1. Solid-State Reactions
  • 5.1.2. Synthesis via Liquid Phase Precursors
  • 5.1.3. Synthesis via Aerosol
  • 5.1.4. Other Synthesis Methods
  • 5.2. (Oxy)nitrides
  • 5.2.1. Overview
  • 5.2.2. Synthesis of Nitride Raw Materials
  • 5.2.3. Solid-State Reaction of Nitride Raw Materials
  • 5.2.4. Gas Phase Reduction and Nitridation
  • 5.2.5. Carbothermal Reduction and Nitridation
  • 5.2.6. Synthesis from Metallic Raw Materials
  • 5.3. Sulfides
  • 5.3.1. Solid-State Synthesis of Sulfide Phosphors
  • 5.3.2. Treatments to Improve the Durability of Sulfide Phosphors
  • 5.4. Halides
  • 6. Implementing Phosphors in White LED Lamps
  • 6.1. Conventional LED Packaging
  • 6.2. Improvements for Conventional Dispensing Process
  • 6.3. Chip-on-Board
  • 6.4. Remote Phosphor
  • 6.5. Technologies for Wafer-Level Packaging
  • 7. Tabulation of Luminescence Data of Phosphors for White LEDs
  • 8. Concluding Remarks
  • Acronyms and Abbreviations
  • References
  • Chapter 279: REE Mineralogy and Resources
  • 1. Introduction
  • 1.1. Rare Earth Elements
  • 1.2. Applications and Mining History of REEs
  • 1.3. Present Situation of REE Supply and Demand
  • 1.4. What Will be the Next Source of REEs?
  • 2. Geochemistry of REEs
  • 2.1. Mineral-Melt Partition Coefficients of REEs
  • 2.2. Concentration of REEs in the Earth
  • 2.2.1. Bulk Silicic Earth
  • 2.2.2. Mantle
  • 2.2.3. The Crust
  • 2.3. Rare Earth Partitioning to Melts
  • 2.3.1. Subduction Zones
  • 2.3.2. Continental Rift Zone
  • 2.4. Magmatic Crystallization and REE Enrichment
  • 2.4.1. Accumulation
  • 2.4.2. Immiscibility
  • 2.4.3. Fractional Crystallization
  • 2.5. Partitioning to Fluids
  • 2.5.1. Complexation of REEs
  • 2.5.2. Aqueous Fluid-Silicate Melt Partitioning of REEs in Granites
  • 2.5.3. Aqueous Fluid-Silicate Melt Partitioning of REEs in Carbonatites
  • 2.5.4. Transportation and Deposition of REEs in Hydrothermal System
  • 2.6. Transportation and Deposition of REEs in Submarine Hydrothermal System
  • 2.6.1. Concentrations and Compositions of REEs in Submarine Hydrothermal Systems
  • 2.6.2. Deposition of REEs in Submarine Hydrothermal Systems
  • 2.7. Weathering
  • 2.7.1. Lateritic Profile and Behavior of REEs
  • 2.7.2. Weathering of Carbonatites
  • 3. Rare Earth Mineralogy
  • 3.1. Variation of REE Minerals Associated with Their Crystal Chemistry
  • 3.1.1. ABO4 Minerals with Zircon Structure
  • 3.1.2. ABO4 Minerals with Monazite Structure
  • 3.2. Variation of REE Minerals Associated with the Evolution of Earth
  • 4. Introduction to REE Deposits
  • 4.1. Classification of REE Deposits
  • 4.1.1. Carbonatite Deposits
  • 4.1.2. Peralkaline Rock-Associated Deposits
  • 4.1.3. IOA Deposits
  • 4.1.4. Hydrothermal Vein Deposits
  • 4.1.5. Sediment-Hosted Hydrothermal Deposits
  • 4.1.6. Ion-Adsorption Type Deposits
  • 4.1.7. Placer Deposits
  • 4.1.8. Other Deposits
  • 4.2. Ion-Adsorption Type Deposits
  • 4.2.1. Characteristics of Ion-Adsorption Type REE Deposits
  • 4.2.2. REE Geochemistry of Parent Granites
  • 4.2.3. REE-Bearing Minerals and Their Susceptibilities to Weathering
  • 4.2.4. Mobility and Fractionation of REE During Weathering
  • 4.2.5. Complexing of REEs
  • 4.2.6. Adsorption of REE on Clays
  • 4.2.7. Denudation or Preservation of Ore Body
  • 4.2.8. Conclusions
  • 4.3. Introduction to Apatite REE Deposit
  • 4.3.1. REE and Actinide Crystal Chemistry of Apatite-Group Minerals
  • 4.3.2. Apatite REE Deposits
  • 4.3.2.1. HREE-Rich Apatite Prospects and Deposits: Benjamin River HREE-Rich IOA Prospect, Canada
  • 4.3.2.2. HREE-Rich Apatite Prospects and Deposits: The Blockspruit HREE-Rich IOA Prospect, South Africa
  • 4.3.2.3. REE-Bearing Apatite in Sedimentary Deposits (Phosphorites) and Deep-Sea Mud
  • 4.3.2.4. Summarized Characteristics of HREE-Rich Apatite
  • 4.3.3. REE Production from Apatite as By-Product of Phosphoric Acid: Leaching Method and Adsorbent for REEs
  • 5. Summary
  • Acknowledgments
  • Abbreviations
  • References
  • Chapter 280: Quantum Critical Matter and Phase Transitions in Rare Earths and Actinides
  • 1. Introduction
  • 2. Historical Background
  • 2.1. Classical Continuous Phase Transitions
  • 2.2. Quantum Critical Theory
  • 2.3. HM Theories of Itinerant Magnets
  • 2.4. Experiments: Li(Ho,Y)F4, Ce(Cu,Au)6, and YbRh2Si2
  • 2.4.1. Li(HoY)F4
  • 2.4.2. Ce(Cu,Au)6
  • 2.4.3. YbRh2Si2
  • 3. Present Theories
  • 3.1. Critique of HM and the Kondo Effect
  • 3.2. Kondo Breakdown
  • 3.3. Two-Dimensional Physics
  • 3.4. Critical Quasiparticles
  • 3.5. Conclusion
  • 4. Present Materials and Experiments
  • 4.1. The Cerium Series Ce(Co, Rh, Ir)In5
  • 4.2. Hidden Order in URu2Si2
  • 5. Quantum Criticality Beyond Rare Earths and Actinides
  • 6. Summary and Conclusions
  • Acknowledgments
  • Abbreviations
  • References
  • Chapter 281: Lanthanides in Luminescent Thermometry
  • 1. Introduction
  • 2. Luminescent Thermometers
  • 3. Thermometer Performance
  • 3.1. Relative Thermal Sensitivity
  • 3.2. Temperature Uncertainty
  • 3.2.1. Measuring the Intensity Uncertainty
  • 3.2.2. Experimental Determination of the Temperature Uncertainty
  • 3.2.3. Temperature Uncertainty and Thermometer Size
  • 3.3. Spatial and Temporal Resolution
  • 3.3.1. Comparison of Spatial and Temporal Resolutions from Different Techniques
  • 3.4. Repeatability and Reproducibility
  • 4. Thermal Response Rationalizing
  • 4.1. Single-Center Emission
  • 4.1.1. Boltzmann Law
  • 4.1.2. Boltzmann Law for Overlapped Transitions
  • 4.1.3. Relative Sensitivity and Temperature Uncertainty: The Example of Upconverting Nanoparticles
  • 4.2. Dual-Center Emission
  • 4.2.1. Intensity vs Temperature: Sigmoidal Dependence
  • 4.2.2. Relative Sensitivity and Temperature Uncertainty. Illustrative Examples
  • 5. Examples
  • 5.1. Crystals of Ionic Complexes
  • 5.2. Molecular Thermometers
  • 5.2.1. In Polymer Matrices
  • 5.2.2. In Inorganic Matrices
  • 5.2.3. In Organic-Inorganic Hybrid Matrices
  • 5.3. Metal-Organic Frameworks
  • 5.4. Upconverting Nanoparticles
  • 5.5. NIR-Emitting Nanoparticles
  • 6. Conclusion and Perspectives
  • Acknowledgments
  • List of Symbols
  • Acronyms and Abbreviations
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

279,65 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok