Input Modeling with Phase-Type Distributions and Markov Models

Theory and Applications
 
 
Springer (Verlag)
  • erschienen am 20. Mai 2014
  • |
  • XII, 127 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-06674-5 (ISBN)
 
Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It's been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published.
2014
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 20 s/w Tabellen, 35 farbige Abbildungen, 2 farbige Tabellen, 7 s/w Abbildungen
  • |
  • 7 schwarz-weiße und 35 farbige Abbildungen, 20 schwarz-weiße und 2 farbige Tabellen
  • 3,34 MB
978-3-319-06674-5 (9783319066745)
10.1007/978-3-319-06674-5
weitere Ausgaben werden ermittelt
1. Introduction.- 2. Phase Type Distributions.- 3. Parameter Fitting for Phase Type Distributions.- 4. Markovian Arrival Processes.- 5. Parameter Fitting of MAPs.- 6. Stochastic Models including PH Distributions and MAPs.- 7. Software Tools.- 8. Conclusion.- References.- Index.

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

58,84 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen