Current Trends in Atomic Physics

 
 
Oxford University Press
  • erschienen am 16. Mai 2019
  • |
  • 464 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-19-257409-1 (ISBN)
 
This book gathers the lecture notes of courses given at Session CVII of the summer school in physics, entitled <"Current Trends in Atomic Physics>" and held in July, 2016 in Les Houches, France. Atomic physics provides a paradigm for exploring few-body quantum systems with unparalleled control. In recent years, this ability has been applied in diverse areas including condensed matter physics, high energy physics, chemistry and ultra-fast phenomena as well as foundational aspects of quantum physics. This book addresses these topics by presenting developments and current trends via a series of tutorials and lectures presented by international leading investigators.
  • Englisch
  • Oxford
  • |
  • Großbritannien
134 grayscale line figures and 14 grayscale half-tones
  • 14,30 MB
978-0-19-257409-1 (9780192574091)
weitere Ausgaben werden ermittelt
Antoine Browaeys is Senior Researcher at the Laboratoire Charles Fabry, Institut d'Optique, Université Paris Saclay, in Palaiseau, France. Thierry Lahaye is a researcher at the Laboratoire Charles Fabry, Institute d'Optique, Université Paris Saclay, in Palaiseau, France. Trey Porto is an adjunct professor at the Joint Quantum Institute, NIST/University of Maryland in College Park, Maryland, USA. Charles S. Adams is a professor in the Department of Physics at Durham University and the Joint Quantum Center, in Durham, United Kingdom. Matthias Weidemüller, is Dean and a professor at the Physikalisches Institut, University of Heidelberg, in Heidelberg, Germany. Leticia F. Cugliandolo is a professor at the Sorbonne University Laboratory of Theoretical and High Energy Physics in Paris, France.
  • Cover
  • Current Trends in Atomic Physics
  • Copyright
  • Previous sessions
  • Publishers
  • Preface
  • Contents
  • List of participants
  • Organizers
  • Lecturers
  • Students
  • 1. Quantum optics with diamond color centers coupled to nanophotonic devices
  • 1.1 Introduction: quantum optics with solid-state systems
  • 1.2 Coherent atom-photon interactions using solid-state emitters
  • 1.3 Indistinguishable photons from separated silicon-vacancy centers in diamond
  • 1.4 Narrow-linewidth optical emitters in diamond nanostructures via silicon ion implantation
  • 1.5 Diamond nanophotonics platform for quantum nonlinear optics
  • 1.6 Two-SiV entanglement in a nanophotonic device
  • 1.7 SiV spin coherence at low temperatures
  • 1.7.1 Electron-phonon processes of the silicon-vacancy center in diamond
  • 1.7.2 SiV spin at low temperatures: a long-lived quantum memory
  • 1.8 Outlook
  • Acknowledgments
  • References
  • 2. Searches for new, massive particles with AMO experiments
  • 2.1 Electromagnetism with a massive photon
  • 2.2 Searching for a new particle: the "hidden photon"
  • 2.3 Generalization into the language of particle physics
  • 2.4 New types of interactions from new types of force-mediating particles
  • 2.5 Example: Higgs boson exchange in atoms
  • 2.6 Effects in atoms from a generalized Higgs boson sector
  • 2.6.1 A digression on supersymmetry
  • 2.6.2 A new effect from Higgs exchange: violation of time-reversal and parity
  • 2.6.3 A digression on T- and CP-violation
  • 2.6.4 Atomic state mixing due to the T, P-violating interaction
  • 2.6.5 Measurable effect of T, P-violation: atomic electric dipole moment
  • 2.6.6 How to measure an atomic EDM
  • 2.7 Particle dipole moments as probes of particle physics
  • 2.7.1 Non-symmetry violating dipole moments: magnetic moment
  • 2.7.2 Electron electric dipole moment: CP-violation
  • 2.7.3 How to look for an electron EDM
  • 2.8 Searching for parity and time-reversal violation with molecules
  • 2.8.1 New developments in molecule-based EDM experiments
  • 2.8.2 State of the art for electron EDM: the ACME experiment
  • 2.8.3 Future prospects for electron EDM experiments
  • 2.9 Final remarks
  • References
  • 3. Molecular-physics aspects of cold chemistry
  • 3.1 Introduction
  • 3.1.1 Chemistry with ultracold atoms and with cold molecules: simple considerations
  • 3.1.2 Cold chemistry with simple cold molecules
  • 3.2 Introduction to the quantum-mechanical treatment of few-electron molecules
  • 3.2.1 The Born-Oppenheimer approximation with the example of H2+
  • 3.2.2 The Born-Oppenheimer solution
  • 3.2.3 Adiabatic and nonadiabatic corrections
  • 3.2.4 Relativistic and radiative corrections
  • 3.3 Basic aspects of cold ion-molecule chemistry
  • 3.3.1 Ion-neutral reactions at low temperatures: Langevin capture models
  • 3.3.2 Breakdown of classical Langevin-capture models at low temperature
  • 3.4 Cold samples by supersonic-beam deceleration methods
  • 3.4.1 Multistage Zeeman deceleration and trapping
  • 3.4.2 Rydberg-Stark deceleration, deflection, and trapping
  • 3.4.3 Rydberg-Stark deceleration, deflection, and trapping using surface-electrode decelerators
  • 3.4.4 Ion-neutral reactions within a Rydberg-electron orbit
  • 3.5 Examples
  • 3.5.1 The H2+H+2H+3 +H reaction
  • 3.5.2 The H+H+ H+2 reaction system
  • 3.6 Conclusions
  • Acknowledgments
  • References
  • 4. Frequency combs and precision spectroscopy of atomic hydrogen
  • 4.1 The frequency comb
  • 4.1.1 Introduction
  • 4.1.2 The history of the frequency comb
  • 4.1.2.1 Optical beat notes
  • 4.1.2.2 Optical phase-locked loops
  • 4.1.2.3 Interval divider
  • 4.1.2.4 Frequency chains
  • 4.1.3 Mode-locked lasers as comb generators
  • 4.1.3.1 Derivation of the comb from the cavity boundary conditions
  • 4.1.3.2 Derivation of the comb from the pulse train
  • 4.1.3.3 Linewidth of a single mode
  • 4.1.3.4 Testing the comb
  • 4.1.3.5 Generating an octave-spanning comb
  • 4.1.3.6 Stabilizing the frequency comb
  • 4.1.3.7 Comb fixed points
  • 4.1.3.8 Frequency comb summary
  • 4.2 Atomic hydrogen
  • 4.2.1 Introduction
  • 4.2.2 Theory
  • 4.2.3 Experiment
  • 4.2.3.1 The 1S-2S transition
  • 4.2.3.2 The 2S-4P transitions
  • 4.2.3.3 The 1S-3S transition
  • 4.2.4 XUV direct comb spectroscopy
  • Acknowledgments
  • References
  • 5. Collective effects in quantum systems
  • 5.1 Introduction
  • 5.2 Basic methods and concepts
  • 5.3 Correlated systems and cold atoms
  • 5.4 One-dimensional quantum systems
  • 5.5 Since the course
  • References
  • 6. Macroscopic scale atom interferometers: introduction, techniques, and applications
  • 6.1 Overview of these notes
  • 6.2 Introduction to atom interferometry
  • 6.2.1 Beam splitters and mirrors for atoms: a simplified treatment using the two level atom
  • 6.2.2 Beam splitters and mirrors for atoms: the three level atom
  • 6.2.3 The phase shift of an atom interferometer: simple example using a perturbative treatment
  • 6.2.4 The phase shift of an atom interferometer: formal treatment
  • 6.3 Large Momentum Transfer (LMT) atom optics
  • 6.3.1 Motivation for LMT atom optics
  • 6.3.2 Methods for LMT atom optics
  • 6.3.2.1 Sequential raman transitions
  • 6.3.2.2 Sequential and multiphoton Bragg transitions
  • 6.3.2.3 Adiabatic rapid passage methods
  • 6.3.3 Challenges of large area atom interferometry
  • 6.4 Ten meter atomic fountain for long duration atom interferometry
  • 6.5 Differential measurement strategies and applications of atom interferometry
  • 6.5.1 Overview of atom interferometry applications
  • 6.5.2 Differential measurement strategies
  • 6.5.3 Gravity gradiometry and tidal forces across a single quantum system
  • 6.5.4 Tests of the equivalence principle
  • 6.5.5 Tests of quantum mechanics at macroscopic scales
  • 6.5.6 Gravitational wave detection
  • 6.6 Matter wave lensing
  • 6.7 Efficient optical lattice launching
  • 6.7.1 Coherent optical lattice launch
  • 6.7.2 Lattice beam geometry
  • 6.7.3 Optimizing lattice launch parameters
  • 6.8 Theory of atom optics with optical lattices
  • 6.8.1 Overview
  • 6.8.2 The Hamiltonian in different frames
  • 6.8.3 Phase evolution under the adiabatic approximation
  • 6.8.4 Calculating corrections to the adiabatic approximation using the method of perturbative adiabatic expansion
  • 6.8.5 An Example of Perturbative Adiabatic Expansion: Calculating the Non-Adiabatic Correction to the Phase Shift Evolved During a Lattice Beam Splitter
  • 6.8.6 Applications: atom interferometers using optical lattices as waveguides
  • 6.8.6.1 Gravimetry and gravity gradiometry
  • 6.8.6.2 Tests of atom charge neutrality
  • 6.8.6.3 Measurements of h/m and of isotope mass ratios
  • 6.8.6.4 Gyroscopes
  • 6.8.7 Outlook
  • 6.8.8 Additional calculation: boosting between different frames
  • 6.8.9 Additional calculation: generalizing to the case of a finite wavepacket
  • 6.8.10 Additional calculation: perturbative adiabatic expansion at higher orders
  • 6.9 Conclusion and outlook
  • References
  • 7. Quantum jumps, Born's rule, and objective classical reality via quantum Darwinism
  • 7.1 Introduction and preview
  • 7.1.1 Preferred pointer states from einselection
  • 7.1.2 Born's rule from envariance
  • 7.1.3 Classical reality via quantum Darwinism
  • 7.2 Quantum postulates and relative states
  • 7.3 Quantum origin of quantum jumps
  • 7.3.1 Quantum jumps from quantum core postulates
  • 7.3.2 Discussion
  • 7.4 Probabilities from entanglement
  • 7.4.1 Decoherence, phases, and entanglement
  • 7.4.2 Probabilities from symmetries of entanglement
  • 7.4.3 Discussion
  • 7.5 Quantum Darwinism, classical reality, and objective existence
  • 7.5.1 Mutual information in quantum correlations
  • 7.5.2 Objective reality form redundant information
  • 7.5.3 Discussion
  • 7.6 Discussion: frequently asked questions
  • 7.7 Conclusions
  • References
  • 8. Generation of high-order harmonics and attosecond pulses
  • 8.1 High-order harmonic generation in strong laser fields
  • 8.1.1 Introduction
  • 8.1.2 Three-step model
  • 8.2 Macroscopic aspects
  • 8.2.1 Propagation equations
  • 8.2.2 Propagation equations for high-order harmonics
  • 8.2.3 Phase mismatch in high-order harmonic generation
  • 8.3 An introduction to attosecond physics with attosecond pulse trains
  • 8.3.1 Principle of the RABBIT technique
  • 8.3.2 Phase contributions
  • 8.3.3 Applications of the RABBIT technique. Photoionization time delays
  • Acknowledgments
  • References
  • 9. Ultrafast electron dynamics as a route to explore chemical processes
  • 9.1 Problem overview
  • 9.1.1 Chemistry as dynamics of quantum particles
  • 9.1.2 Molecular states and Born-Oppenheimer approximation
  • 9.1.3 Describing correlated electrons
  • 9.2 Correlated electron dynamics following ionization
  • 9.2.1 The hole density
  • 9.2.2 Choice of cationic basis and initial state
  • 9.2.3 Basic mechanisms
  • 9.3 Attochemistry
  • References
  • 10. Matter-wave physics with nanoparticles and biomolecules
  • 10.1 Introduction
  • 10.2 Delocalization and diffraction
  • 10.2.1 General source and coherence requirements
  • 10.2.1.1 Beam splitting of molecular matter-waves
  • 10.2.1.2 Far-field diffraction at a single grating
  • 10.2.2 Optical gratings
  • 10.2.2.1 Phase gratings
  • 10.3 Quantum enhanced measurements
  • 10.4 Molecular beam sources for nanoscale organic matter and biomolecules
  • 10.4.1 Thermal beams and thermal molecules in supersonic beams
  • 10.4.2 Tailoring organic materials for improved volatility
  • 10.4.3 Laser injection of large peptides into (humid) expanding noble gases
  • 10.4.4 Laser-induced acoustic desorption
  • 10.4.5 Molecular ions as the basis for neutral molecular beams
  • 10.5 Conclusion
  • Acknowledgments
  • References
  • 11. Schrodinger cat states in circuit QED
  • 11.1 Introduction to Circuit QED
  • 11.2 Measurement of photon number parity
  • 11.3 Application of parity measurements to state tomography
  • 11.4 Creating cats
  • 11.5 Decoherence of cat states of photons
  • 11.5.1 Quantum Error Correction Using Cat States
  • 11.6 Conclusions and outlook
  • 11.7 Appendix: the Wigner function and displaced parity measurements
  • Acknowledgments
  • References
  • 12. Hanbury Brown and Twiss, Hong Ou and Mandel effects and other landmarks in quantum optics: from photons to atoms
  • 12.1 Two great quantum mysteries
  • 12.2 The Hanbury Brown and Twiss effect for photons
  • 12.2.1 Experimental observation
  • 12.2.2 Semi-classical interpretation
  • 12.2.3 A hot debate
  • 12.2.4 Quantum interpretation
  • 12.2.5 A paradoxical situation
  • 12.3 The Hanbury Brown and Twiss effect for atoms
  • 12.3.1 From light to atoms
  • 12.3.2 Metastable helium: the workhorse of Quantum Atom Optics
  • 12.3.3 Atomic HBT
  • 12.3.4 Fermionic HBT effect
  • 12.4 The Hong Ou and Mandel effect for photons
  • 12.4.1 A two photon interference effect
  • 12.4.2 A fully quantum effect
  • 12.5 The Hong Ou and Mandel effect for atoms
  • 12.6 Outlook: towards Bell's inequalities test with atoms
  • References

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

42,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen