Platform Chemical Biorefinery

Future Green Chemistry
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 2. Juni 2016
  • |
  • 528 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803004-2 (ISBN)
 

Platform Chemical Biorefinery: Future Green Chemistry provides information on three different aspects of platform chemical biorefinery. The book first presents a basic introduction to the industry beneficial for university students, then provides engineering details of existing or potential platform chemical biorefinery processes helpful to technical staff of biorefineries. Finally, the book presents a critical review of the entire platform chemical biorefinery process, including extensive global biorefinery practices and their potential environmental and market-related consequences.

Platform chemicals are building blocks of different valuable chemicals. The book evaluates the possibility of renewable feedstock-based platform chemical production and the fundamental challenges associated with this objective. Thus, the book is a useful reference for both academic readers and industry technical workers. The book guides the research community working in the field of platform chemical biorefinery to develop new pathways and technologies in combination with their market value and desirability.


  • Offers comprehensive coverage of platform chemicals biorefineries, recent advances and technology developments, potential issues for preventing commercialization, and solutions
  • Discusses existing technologies for platform chemicals production, highlighting benefits as well their possible adverse effects on the environment and food security
  • Includes a global market analysis of platform chemicals and outlines industry opportunities
  • Serves as a useful reference for both academic readers and industry technical workers


Dr. S. K. Brar is Associate Professor at Institut National de la Recherche Scientifique (Eau, Terre et Environnement, INRS-ETE), Québec, Canada. She graduated in Master's in Organic Chemistry from National Chemical Laboratory, Pune, India with Master's in Technology in Environmental Sciences and Engineering from Indian Institute of Technology, Bombay, Mumbai, India and a Ph.D. in Environmental Biotechnology from INRS, Quebec, Canada in 2007. After a short post-doctoral fellowship at McGill University, she started her career as Assistant Professor at INRS-ETE. She is leading the research group on the Bioprocessing and Nano-Enzyme Formulation Facility (BANEFF) at INRS-ETE. Her research interests lie in the development of finished products (formulations) of wastewater and wastewater sludge based value-added bioproducts, such as enzymes, organic acids, platform chemicals, biocontrol agents, biopesticides, butanol and biohydrogen. She is also interested in the fate of endocrine disrupter compounds, pharmaceuticals, nanoparticles and other toxic organic compounds during value-addition of wastewater and wastewater sludge in turn finding suitable biological detoxification technologies. The facility has so far led to the successful supervision of 20 PhD students, 6 Master's students and 6 postdoctoral students. She has collaborative programmes with several industries in Canada and researchers from Argentina, Spain, Chile, Switzerland, France, Vietnam, China, USA, India, Thailand, Sri Lanka, Mexico, Morocco, Tunisia and Ivory Coast. Dr. Brar is a recipient of the ASCE State-of-the-Art of Civil Engineering award (2007) for her article titled, 'Bioremediation of Hazardous Wastes - A Review,' which was published in the Practice Periodical of Hazardous, Toxic & Radioactive Waste Management - Special issue on Bioremediation. She has also received the Rudolf gold medal (2008) for her originality of the article published in Practice Periodical of Hazardous, Toxic & Radioactive Waste Management. Recently, in 2014, she has been elected as member of The College of New Scholars, Artists and Scientists of the Royal Society of Canada in recognition for the emerging generation of Canadian intellectual leadership and outstanding performance in her field of environmental biotechnology. She was recently named as the 'YWCA women in science" excellence award. She is on the editorial board of Brazilian Archives of Biology and Technology Journal and associate editor of Journal of Hazardous, Toxic, and Radioactive Waste (ASCE). She has won several accolades throughout her professional career including the outstanding young scientist in India in 2002 (during her short stint at Defense Research and Development Organization) and several others. She has more than 230 research publications which include five books, 40 book chapters, 125 original research papers, 60 research communications in international and national conferences and has registered 2 patents to her credit.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 8,03 MB
978-0-12-803004-2 (9780128030042)
0128030046 (0128030046)
weitere Ausgaben werden ermittelt
  • Front Cover
  • PLATFORM CHEMICAL BIOREFINERY
  • PLATFORM CHEMICAL BIOREFINERY
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1 - Platform Chemicals: Significance and Need
  • 1.1 INTRODUCTION
  • 1.2 COMMERCIALLY IMPORTANT PLATFORM CHEMICALS: ORGANIC ACIDS
  • 1.2.1 3-Hydroxy-propionic Acid
  • 1.2.2 Lactic Acid
  • 1.2.3 Fumaric Acid
  • 1.2.4 Butyric Acid
  • 1.3 COMMERCIALLY IMPORTANT PLATFORM CHEMICALS: ALCOHOLS
  • 1.3.1 Xylitol
  • 1.3.2 Butanol
  • 1.4 ADVANCES IN PLATFORM CHEMICAL?PROCESS ENGINEERING: NATURAL?MICROBIAL SYNTHESIS
  • 1.4.1 3-Hydroxy-propionic Acid
  • 1.4.2 Lactic Acid
  • 1.4.3 Fumaric Acid
  • 1.4.4 Butyric Acid
  • 1.4.5 Xylitol
  • 1.4.6 Butanol
  • 1.5 CHALLENGES AND FUTURE OF THE?INDUSTRY
  • 1.5.1 3-Hydroxy-propionic
  • 1.5.2 Lactic Acid
  • 1.5.3 Fumaric Acid
  • 1.5.4 Butyric Acid
  • 1.5.5 Xylitol
  • 1.5.6 Butanol
  • 1.6 CONCLUSION
  • Acknowledgments
  • 2 - Biorefinery: General Overview
  • 2.1 INTRODUCTION
  • 2.2 BIOREFINERY: A REEMERGING CONCEPT
  • 2.3 BIOREFINERY AND GREENHOUSE GAS EMISSIONS REDUCTION
  • 2.4 BIOREFINERY FOR CHEMICAL AND ENERGY SECURITY
  • 2.5 BIOREFINERY FOR SUSTAINABLE?DEVELOPMENT
  • 2.5.1 How Biorefinery May Be Involved?in Possible Deforestation
  • 2.5.2 How Biorefinery May Affect?Global Food Security
  • 2.5.3 How Biorefinery Can Help in Organic Waste Treatment
  • 2.5.4 Sustainability and Feedstock Hydrolysis in Biorefinery
  • 2.6 CONCLUDING REMARKS
  • Acknowledgments
  • 3 - Petroleum Versus Biorefinery-Based Platform Chemicals
  • 3.1 FEEDSTOCK AVAILABILITY
  • 3.1.1 Comparison Between Petroleum?and Biorefinery Based on?Feedstock Availability
  • 3.1.2 Biomass Feedstocks
  • 3.1.3 Classification of Biorefineries?Based on Their Feedstocks
  • 3.1.4 Availability of Biomass Feedstock
  • 3.2 PRODUCT RANGE
  • 3.2.1 C1-Containing Compounds
  • 3.2.1.1 Methane
  • 3.2.1.2 Carbon Monoxide
  • 3.2.1.3 Methanol
  • 3.2.1.4 Formic Acid
  • 3.2.1.5 Other C1-Based?Building Blocks
  • 3.2.2 C2-Containing Compounds
  • 3.2.2.1 Ethylene
  • 3.2.2.2 Mono-Ethylene Glycol
  • 3.2.2.3 Other C2-Based?Building Blocks
  • 3.2.3 C3-Containing Compounds
  • 3.2.3.1 Lactic Acid
  • 3.2.3.2 Ethyl Lactate
  • 3.2.3.3 Propylene Glycol (1,2-Propanediol)
  • 3.2.3.4 1,3 Propanediol
  • 3.2.3.5 Epichlorohydrin
  • 3.2.3.6 Isopropanol
  • 3.2.3.7 n-Propanol
  • 3.2.3.8 Propylene
  • 3.2.3.9 Acrylic Acid
  • 3.2.3.10 Other C3-Based?Building Blocks
  • 3.2.4 C4-Containing Compounds
  • 3.2.4.1 Butanol
  • 3.2.4.2 Succinic Acid
  • 3.2.4.3 Methyl Methacrylate
  • 3.2.4.4 Other C4-Based?Building Blocks
  • 3.2.5 C5-Containing Compounds
  • 3.2.5.1 Furfural
  • 3.2.5.2 Levulinic Acid
  • 3.2.5.3 Isoprene/Farnesene (Biohydrocarbons)
  • 3.2.5.4 Xylitol/Arabitol
  • 3.2.5.5 Other C5-Based?Building Blocks
  • 3.2.6 C6-Containing Compounds
  • 3.2.6.1 2,5-Furandicarboxylic?Acid
  • 3.2.6.2 Sorbitol
  • 3.2.6.3 Lysine
  • 3.2.6.4 Adipic Acid
  • 3.2.6.5 Glucaric Acid
  • 3.2.6.6 Other C6-Based?Building Blocks
  • 3.2.7 Cn-Containing Compounds
  • 3.2.7.1 p-Xylene
  • 3.2.7.2 Polyhydroxyalkanoates
  • 3.2.7.3 Fatty Acid Derivatives
  • 3.3 NATURE AND EXTENT OF ENVIRONMENTAL POLLUTION
  • 3.3.1 Environmental Impacts
  • 3.3.2 Major Environmental Impacts?of Biorefining Fuels
  • 3.4 SUSTAINABILITY
  • 3.4.1 Sustainability of Biorefinery?Strategies
  • 4 - Life Cycle Analysis of Potential Substrates of Sustainable Biorefinery
  • 4.1 INTRODUCTION
  • 4.2 LIGNOCELLULOSIC BIOMASS FROM AGRICULTURE AND FORESTS
  • 4.3 ALGAE AND FUNGI
  • 4.4 INDUSTRIAL ORGANIC WASTE
  • 4.5 MUNICIPAL WASTEWATER AND?SOLID WASTE
  • 4.6 SLUDGE FROM WASTEWATER?TREATMENT PLANTS
  • Acknowledgments
  • 5 - Propylene Glycol: An Industrially Important C3 Platform Chemical
  • 5.1 INTRODUCTION
  • 5.2 GLOBAL PROPYLENE MARKET: AN?OVERVIEW
  • 5.3 PROPYLENE GLYCOL AND COMMERCIAL APPLICATIONS
  • 5.4 A COMPARATIVE EVALUATION OF?DIFFERENT METHODS USED FOR?PROPYLENE PRODUCTION
  • 5.4.1 Synthesis of Propylene by Thermochemical Processes
  • 5.4.1.1 Propylene Glycol From Sorbitol
  • 5.4.1.2 Synthesis of Propylene Glycol From Lactic Acid
  • 5.4.1.3 Synthesis of Propylene Glycol From Glycerol
  • 5.4.2 Biological Synthesis of Propylene Glycol via Fermentation
  • 5.4.2.1 Clostridium sp
  • 5.4.2.2 Klebsiella
  • 5.4.2.3 Escherichia coli
  • 5.4.2.4 Others
  • 5.4.2.5 Microorganisms?Responsible for 1,2-Propanediol?Synthesis
  • 5.5 SUSTAINABLE PROPYLENE GLYCOL PRODUCTION AND CHALLENGES
  • 6 - 3-Hydroxy-propionic Acid
  • 6.1 INTRODUCTION
  • 6.2 IMPORTANCE OF 3-HYDROXY-PROPIONIC ACID
  • 6.3 BIOTECHNOLOGICAL PRODUCTION OF 3-HYDROXY-PROPIONIC ACID
  • 6.3.1 Production of 3-Hydroxy-propionic Acid Using Glucose?as a Substrate
  • 6.3.2 Production of 3-Hydroxy-propionic Acid Using Glycerol
  • 6.3.3 CoA-Dependent Pathway
  • 6.3.4 CoA-Independent Pathway
  • 6.3.5 Production of 3-Hydroxy-propionic Acid Using Saccharomyces cerevisiae
  • 6.3.6 Factors Affecting the Microbial Production of 3-Hydroxy-propionic Acid
  • 6.3.6.1 Cofactor B12 Supply
  • 6.3.6.2 Nicotinamide Adenine Dinucleotide Phosphate Supply and Redox?Balance
  • 6.3.7 Toxicity Effects of 3-Hydroxy-propionic Acid
  • 6.3.8 Economic Feasibility of?3-Hydroxy-propionic Acid?Production?Using a Biotechnological?Approach
  • 6.4 POTENTIAL FEEDSTOCK FOR 3-HYDROXY-PROPANOIC ACID PRODUCTION
  • 6.5 PRODUCTION OF BIODEGRADABLE?POLYMER USING 3-HYDROXY-PROPANOIC?ACID
  • 7 - Butyric Acid: A Platform Chemical for Biofuel and High-Value Biochemicals
  • 7.1 INTRODUCTION
  • 7.2 BUTYRIC ACID AS A POTENTIAL?BIOREFINERY
  • 7.3 PRODUCTION OF BUTYRIC ACID
  • 7.4 CHEMICAL SYNTHESIS?OF BUTYRIC ACID
  • 7.5 GENERAL ASPECTS OF BIOLOGICAL?BUTYRIC ACID PRODUCTION
  • 7.6 MICROORGANISMS
  • 7.7 FEEDSTOCK
  • 7.8 FERMENTATION
  • 7.9 DOWNSTREAM PROCESSING
  • 7.10 BUTYRIC ACID AS A PLATFORM?CHEMICAL FOR PROMISING BIOFUEL BUTANOL
  • 7.11 CHEMICAL CONVERSION OF BUTYRIC?ACID TO BUTANOL
  • 7.12 BIOCHEMICAL CONVERSION OF?BUTYRIC ACID TO BUTANOL
  • 7.13 THE FUTURE OF BUTYRIC?ACID IN INDUSTRY
  • Acknowledgments
  • 8 - Fumaric Acid: Production and Application Aspects
  • 8.1 INTRODUCTION
  • 8.2 PRODUCTION ROUTES OF FUMARIC?ACID
  • 8.2.1 Fumaric Acid Biosynthesis:?Metabolic Pathways
  • 8.2.2 Petrochemical Route of Fumaric?Acid Production
  • 8.2.3 Fermentative Production?of Fumaric Acid
  • 8.2.3.1 Substrate Selection
  • 8.2.3.2 Fungal Strains Versus Fumaric Acid?Production
  • 8.2.3.3 Selection of a?Neutralizing Agent
  • 8.2.3.4 Role of Medium Composition
  • 8.2.3.5 Role of Fungal?Morphology
  • 8.2.3.6 Strategies for the?Enhanced Production?of Fumaric Acid
  • 8.2.3.6.1 GENETIC AND METABOLIC ENGINEERING
  • 8.2.3.6.2 IMMOBILIZATION OF FUNGAL MYCELIUM
  • 8.3 MOLECULAR BIOLOGY OF FUNGAL MORPHOGENESIS VERSUS FUMARIC?ACID PRODUCTION
  • 8.4 DOWNSTREAM PROCESSING OF?FUMARIC ACID
  • 8.5 APPLICATION ASPECTS OF FUMARIC?ACID
  • 8.5.1 Uses of Fumaric Acid in the?Food Industry
  • 8.5.2 Dairy and Poultry Applications
  • 8.5.3 Application in the Resin Industry
  • 8.5.4 Application in Green Chemistry:?As a Beckmann Rearrangement Promoter
  • 8.6 FUTURE PERSPECTIVES AND CHALLENGES
  • Acknowledgment
  • 9 - Malic and Succinic Acid: Potential C4 Platform Chemicals for Polymer and Biodegradable Plastic Production
  • 9.1 DIFFERENT METHODS OF MALIC ACID?PRODUCTION
  • 9.1.1 Malic Acid
  • 9.1.2 Methods of Malic Acid?Production
  • 9.2 MALIC ACID PRODUCTION FROM?RENEWABLE MATERIALS: COMMERCIAL POTENTIAL
  • 9.2.1 Malate From Fumarate
  • 9.2.2 Fermentative Production of?l-malic Acid
  • 9.2.3 Biochemical Aspects of l-malic?Acid Production
  • 9.2.4 Commercial Potential
  • 9.3 APPLICATION OF MALIC ACID FOR THE PRODUCTION OF RENEWABLE?POLYMERS
  • 9.4 SUCCINIC ACID BIOPRODUCTION
  • 9.4.1 Succinic Acid
  • 9.4.2 Current and Future Applications
  • 9.4.3 Succinic Acid Bioproduction
  • 9.4.3.1 Biochemical Reactions
  • 9.4.3.2 Biocatalysts
  • 9.4.3.2.1 ACTINOBACILLUS SUCCINOGENES
  • 9.4.3.2.2 ANAEROBIOSPIRILLUM SUCCINICIPRODUCENS
  • 9.4.3.2.3 ESCHERICHIA COLI
  • 9.4.3.2.4 MANNHEIMIA SUCCINICIPRODUCENS
  • 9.4.3.2.5 OTHER MICROORGANISMS
  • 9.4.3.3 Reaction Studies
  • 9.5 SUCCINIC ACID AND ITS COMMERCIAL POTENTIAL FOR BIODEGRADABLE PLASTIC PRODUCTION
  • 9.5.1 Current Market Status?of Succinic Acid
  • 9.5.2 Polybutylene Succinate Potential
  • 9.5.3 Butanediol Potential
  • 9.6 CONCLUSIONS
  • 10 - Potential Applications of Renewable Itaconic Acid for the Synthesis of 3-Methyltetrahydrofuran
  • 10.1 INTRODUCTION
  • 10.2 METHYLTETRAHYDROFURAN
  • 10.3 METHYLTETRAHYDROFURAN?PRODUCTION
  • 10.4 RECOVERY AND PURIFICATION OF METHYLTETRAHYDROFURAN
  • 10.5 METHYLTETRAHYDROFURAN?APPLICATIONS
  • 10.6 ITACONIC ACID
  • 10.7 BRIEF HISTORY OF ITACONIC ACID
  • 10.8 MICROORGANISMS EXPLOITED FOR THE PRODUCTION OF ITACONIC ACID
  • 10.9 BIOSYNTHESIS OF ITACONIC ACID
  • 10.10 ASPERGILLUS TERREUS AS A POTENT PRODUCER OF ITACONIC ACID
  • 10.11 PROCESS DEVELOPMENT STRATEGIES?FOR ENHANCED ITACONIC ACID PRODUCTION
  • 10.12 POTENTIAL FEEDSTOCKS FOR THE BIOPRODUCTION OF ITACONIC ACID
  • 10.13 DOWNSTREAM PROCESS FOR THE?RECOVERY OF ITACONIC ACID
  • 10.14 POTENTIAL APPLICATIONS OF?ITACONIC ACID
  • 10.15 MARKET POTENTIAL OF ITACONIC?ACID
  • 10.16 CONCLUDING REMARKS
  • 11 - Production of Renewable C5 Platform Chemicals and Potential Applications
  • 11.1 INTRODUCTION
  • 11.2 POTENTIAL OF C5 PLATFORM?CHEMICALS
  • 11.3 METABOLIC ENGINEERING OF C5?PLATFORM CHEMICALS
  • 11.4 XYLITOL-SUGAR ALCOHOL
  • 11.5 5-AMINOVALARIC ACID: ORGANIC?ACID
  • 11.6 1,5-DIAMINOPENTANE: DIAMINE
  • 11.7 ITACONIC ACID: ORGANIC ACID
  • 11.8 LEVULINIC ACID: ORGANIC KETO?ACID
  • 11.9 FURFURAL: AN ALDEHYDE
  • 11.10 GLUTAMIC ACID: AMINO ACID
  • 11.11 CONCLUSION
  • Acknowledgments
  • 12 - Sorbitol Production From Biomass and Its Global Market
  • 12.1 INTRODUCTION
  • 12.2 A COMPARATIVE EVALUATION OF?DIFFERENT RENEWABLE FEEDSTOCKS?USED FOR SORBITOL PRODUCTION
  • 12.3 DOWNSTREAM PROCESSING?OF SORBITOL
  • 12.4 GLOBAL PRODUCTION AND THE?SORBITOL MARKET
  • 12.5 SORBITOL AND ITS MAJOR?APPLICATIONS
  • 12.5.1 Specific Applications
  • 12.5.1.1 Pharmaceutical Applications
  • 12.5.1.2 Food Applications
  • 12.5.1.3 Cosmetic?Applications
  • 12.5.1.4 Specialized?Applications
  • 12.6 CONCLUSIONS
  • Acknowledgments
  • 13 - Sugar-Derived Industrially Important C6 Platform Chemicals
  • 13.1 INTRODUCTION
  • 13.2 GLUCARIC ACID
  • 13.2.1 Glucaric Acid Production
  • 13.2.2 Industrial Importance and?Scope of Glucaric Acid
  • 13.3 2,5-FURANDICARBOXYLIC ACID
  • 13.3.1 2,5-Furandicarboxylic Acid Production
  • 13.3.2 Industrial Importance and?Scope of 2,5-Furandicarboxylic Acid
  • 13.4 GLUCONIC ACID
  • 13.4.1 Gluconic Acid Production
  • 13.4.2 Industrial Applications of?Gluconic Acid
  • 13.5 SORBITOL
  • 13.5.1 Sorbitol Production
  • 13.5.2 Utilization of Sorbitol
  • 13.5.2.1 Family 1: Isosorbide
  • 13.5.2.2 Family 2: Glycols
  • 13.5.2.3 Family 3: Direct Polymerization
  • 13.6 CONCLUSION AND FUTURE OUTLOOK
  • 14 - Production of Drop-In and Novel Bio-Based Platform Chemicals
  • 14.1 POSSIBILITY AND CHALLENGES OF?DROP-IN CHEMICALS PRODUCTION
  • 14.2 ROLE OF CHEMICAL CATALYSIS IN?DROP-IN CHEMICAL PRODUCTION
  • 14.3 LACTIC ACID: A COMMERCIALLY IMPORTANT DROP-IN PLATFORM?CHEMICAL
  • 14.3.1 Chemical Structure
  • 14.3.2 Routes of Production
  • 14.3.2.1 Chemical Synthesis
  • 14.3.2.2 Fermentation
  • 14.3.3 New Catalytic Routes?Toward Lactic Acid
  • 14.3.3.1 Conversion of Glycerol to Lactic Acid
  • 14.3.3.1.1 OXIDATION PROCESS
  • 14.3.3.1.2 HYDROTHERMAL ALKALINE CONDITIONS
  • 14.3.3.1.3 ELECTROCHEMICAL APPROACHES
  • 14.3.3.1.4 OXIDATIVE REACTION ENVIRONMENT
  • 14.3.4 Conversion of Other?Substrates to Lactic Acid
  • 14.3.5 Conversion of Trioses and Hexose-Based Sugars to Lactic Acid Under Mild Conditions
  • 14.3.6 Dehydration to Acrylic Acid
  • 14.3.7 Condensation/Dehydration?into 2,3-Pentanedione
  • 14.3.8 Decarbonylation/Dehydration?to Acetaldehyde
  • 14.3.9 Reduction to 1,2-propanediol
  • 14.3.10 Oxidation to Pyruvic Acid
  • 14.3.11 Catalytic Upgrading or?Reforming of Lactic Acid
  • 14.3.12 Esterification to Lactates
  • 14.3.13 Synthesis of Lactide and?Polylactic Acid
  • 14.4 BIO-POLYETHYLENE TEREPHTHALATE: PRODUCTION AND TECHNICAL?CHALLENGES
  • 14.4.1 Bio-Poly(Ethylene?Terephthalate)
  • 14.4.2 Production of?Poly(Ethylene Terephthalate)
  • 14.4.3 Technical Challenges of Production
  • 14.5 NOVEL BIO-BASED PLATFORM?CHEMICALS
  • Acknowledgments
  • 15 - Platform Chemicals and Pharmaceutical Industries
  • 15.1 INTRODUCTION
  • 15.2 ISOSORBIDE
  • 15.2.1 As a Platform Chemical and Pharmaceutical
  • 15.2.1.1 Application in?Cosmetics and Drug Delivery
  • 15.2.1.2 Other Applications?in the Pharmaceutical Industry
  • 15.3 CYANOPHYCIN, ASPARTIC ACID,?AND ARGININE
  • 15.3.1 Cyanophycin
  • 15.3.1.1 Biosynthesis and Degradation
  • 15.3.1.2 Biotechnological Production of Cyanophycins
  • 15.3.1.3 Cyanophycin as a Platform Chemical
  • 15.3.2 Aspartic Acid
  • 15.3.2.1 Physiological Roles?of Aspartic Acid
  • 15.3.2.1.1 PHYSIOLOGICAL ROLES OF L-ASPARTIC ACID
  • 15.3.2.1.2 PHYSIOLOGICAL ROLES OF D-ASPARTIC ACID
  • 15.3.2.2 Biotechnological Production of?Aspartic Acid
  • 15.3.2.3 Aspartic Acid as a Platform Chemical
  • 15.3.3 l-arginine
  • 15.3.3.1 Physiological Roles?of Arginine
  • 15.3.3.2 Application of?l-arginine as a?Platform Chemical
  • 15.3.3.2.1 AS NUTRACEUTICAL SUPPLEMENTS
  • 15.3.3.2.2 ARGININE IN THE PREPARATION OF A HYDROGEL BASE
  • 15.3.3.3 Other Applications
  • 15.4 HYDROXYMETHYL FURFURAL
  • 15.5 GLYCEROL
  • 15.5.1 Applications of Glycerol
  • 15.5.1.1 Hydrogel Base?for Drug Delivery?and Tissue?Engineering
  • 15.5.1.2 Glycerol as a Raw Material
  • 15.5.1.2.1 AS ANIMAL FEEDSTUFF
  • 15.5.1.2.2 CHEMICAL PRODUCTION VIA BIOLOGICAL CONVERSION
  • 15.5.1.2.3 HYDROGEN AS FUEL
  • 15.5.1.2.4 POLYHYDROXYALKAONATES
  • 15.5.1.2.5 DOCOSAHEXANOIC ACID
  • 15.5.1.2.6 AS A BASIC PHARMACEUTICAL EXCIPIENT
  • 15.6 ACETALDEHYDE
  • 15.6.1 As a Platform Chemical in Industries
  • 15.7 FUTURE STRIDES
  • 15.8 CONCLUSIONS
  • 16 - Biorefinery and Possible Deforestation
  • 16.1 INTRODUCTION
  • 16.2 FOREST-BASED FEEDSTOCK FOR?BIOREFINERY
  • 16.2.1 Softwood Biomass as a?Feedstock for Biorefinery
  • 16.2.1.1 Pine Tree Biomass
  • 16.2.1.2 Spruce Tree
  • 16.2.2 Hardwood Biomass as a?Feedstock for Biorefinery
  • 16.2.2.1 Willow Wood
  • 16.2.2.2 Quaking Aspen Tree
  • 16.2.2.3 Birch Tree
  • 16.2.3 Agroforest-Based Feedstock
  • 16.2.3.1 Bamboo Bark
  • 16.2.3.2 Grasses
  • 16.3 APPLICATIONS OF FOREST RESOURCES?AS BIOREFINERY FEEDSTOCKS
  • 16.3.1 Various Products From Forest-Based Biomass
  • 16.3.1.1 Ethanol
  • 16.3.1.2 Acetic Acid
  • 16.3.1.3 Lactic Acid
  • 16.3.1.4 Ethylene
  • 16.3.1.5 Propanediol
  • 16.3.1.6 Glycerol
  • 16.4 REMEDIAL MEASURES
  • 16.5 EXTENSIVE LAND USE FOR THE?PRODUCTION OF BIOREFINERY?FEEDSTOCK AND DEFORESTATION
  • 16.6 CONCLUSIONS
  • 17 - Biorefinery and Possible Negative Impacts on the Food Market
  • 17.1 INTRODUCTION
  • 17.2 CLASSIFICATION SCHEME AND?COMPLEXITY
  • 17.3 FOOD MATERIALS USED IN?BIOREFINERY
  • 17.4 PRESENT GLOBAL PRODUCTION?AND DEMAND OF BIOFUELS AND?BIO-BASED CHEMICALS
  • 17.5 PROJECTED DEMAND OF FOOD-GRADE MATERIALS IN BIOREFINERY FOR THE?NEXT 20YEARS
  • 17.6 POSSIBILITY OF INCREASED FOOD PRICES DUE TO EXTENSIVE BIOREFINERY?PRACTICES IN THE FUTURE
  • 17.7 CONCLUSION
  • 18 - Algal Biorefinery for High-Value Platform Chemicals
  • 18.1 INTRODUCTION
  • 18.2 POTENTIAL PRODUCTS OF ALGAL?BIOREFINERY
  • 18.2.1 Pigments
  • 18.2.1.1 Carotenoids
  • 18.2.1.2 Chlorophylls
  • 18.2.1.3 Phycobiliproteins
  • 18.2.2 Vitamins
  • 18.2.2.1 Vitamin E
  • 18.2.2.2 Vitamin C
  • 18.2.3 Phytosterols
  • 18.2.4 Polysaccharides
  • 18.2.4.1 Extracellular Polysaccharides
  • 18.2.4.2 Structural Polysaccharides
  • 18.2.5 Organic Acids
  • 18.2.5.1 Succinic Acid
  • 18.2.5.2 Malic Acid
  • 18.2.6 Lipids
  • 18.2.6.1 Long Chain Polyunsaturated?Fatty Acids
  • 18.2.6.2 Phospholipids and Galactolipids
  • 18.2.6.3 Oxylipins
  • 18.2.7 Miscellaneous Algal?Compounds
  • 18.2.7.1 Botryococcene
  • 18.2.7.2 Sporopollenin
  • 18.2.7.3 Polyhydroxy?alkanoates
  • 18.3 ALGAE CULTIVATION PROCESS?ENGINEERING FOR ENERGY?AND CHEMICALS
  • 18.3.1 Metabolic Engineering
  • 18.3.1.1 Enhanced?Flocculation
  • 18.3.1.2 Reduced Production?of Side Products or Catabolic Enzyme Activity
  • 18.3.1.3 Enhanced Specific Coproduct?Production
  • 18.3.1.4 Improved?Photosynthetic Rate
  • 18.3.2 Mechanical Engineering
  • 18.3.2.1 Open Pond Culture
  • 18.3.2.2 Enclosed Photobioreactors
  • 18.3.2.3 Hybrid Systems
  • 18.3.2.4 Integration to Reduce the Environmental Footprint
  • 18.4 CONCLUSIONS
  • Acknowledgments
  • 19 - Animal Fat- and Vegetable Oil-Based Platform Chemical Biorefinery
  • 19.1 GLOBAL PRODUCTION OF ANIMAL FAT?AND VEGETABLE OIL
  • 19.1.1 Global Production?of Vegetable Oils
  • 19.1.1.1 Palm Oil
  • 19.1.1.2 Soybean Oil
  • 19.1.1.3 Rapeseed Oil
  • 19.1.1.4 Sunflower Oil
  • 19.1.2 Global Production of Animal?Fats
  • 19.1.2.1 Omega-3 Fatty Acids
  • 19.1.2.2 Fat and Oils From Microalgae
  • 19.1.2.2.1 OMEGA-3 FATTY ACID PRODUCTION: A BIOREFINERY APPROACH
  • 19.1.2.3 Fish Oil
  • 19.2 BIODIESEL PRODUCTION
  • 19.2.1 Application of Vegetable Oil for Biodiesel Production
  • 19.2.2 Application of Animal Fat for Biodiesel Production
  • 19.2.2.1 Microalgae
  • 19.2.2.2 Used Cooking Oil?and Brown Grease
  • 19.2.3 Platform Chemical Recovery/Production From Biodiesel?Industry Waste
  • 19.2.3.1 Methanol
  • 19.2.3.2 Glycerol
  • 19.3 DIRECT APPLICATION OF FAT AND OIL?FOR PLATFORM CHEMICAL PRODUCTION
  • 19.3.1 Platform Chemicals From Oils?and Fats
  • 19.3.2 Metabolic Engineering for the Production of Platform?Chemicals
  • 19.4 POTENTIAL MARKET OF FAT- AND OIL-DERIVED PLATFORM CHEMICALS
  • 19.4.1 Glycerols
  • 19.4.2 Fatty Acid Methyl Esters, Alcohols, and Amines
  • 19.4.3 Consumer Products
  • 19.5 CONCLUSION
  • 20 - Platform Chemical Biorefinery and Agroindustrial Waste Management
  • 20.1 INTRODUCTION
  • 20.2 AGROINDUSTRIAL WASTE TYPES AND?THEIR GLOBAL ANNUAL PRODUCTION
  • 20.2.1 Current Scenario of?Agroindustrial Waste?Production
  • 20.2.2 Factors Affecting Biomass?Yield
  • 20.3 PRESENT AGROINDUSTRIAL WASTE MANAGEMENT APPROACHES
  • 20.3.1 Current Practices: Traditional?Uses
  • 20.3.2 Bioethanol
  • 20.3.2.1 Separate Hydrolysis?and Fermentation
  • 20.3.2.2 Simultaneous Saccharification and Fermentation
  • 20.3.2.3 Simultaneous Saccharification?and Cofermentation
  • 20.3.2.4 Consolidated?Biomass Processing
  • 20.3.3 Adsorbents From?Agricultural Waste
  • 20.3.4 Bagasse and Sugarcane Cogeneration
  • 20.3.5 Kraft Paper Process and?Biorefinery
  • 20.4 ADVANTAGES AND CHALLENGES?OF USING AGROINDUSTRIAL WASTES AS?THE FEEDSTOCK FOR BIOREFINERY
  • 20.4.1 Advantages
  • 20.4.1.1 Availability
  • 20.4.1.2 Environmental Sustainability
  • 20.4.1.3 Renewable Nature
  • 20.4.1.4 Economic Viability
  • 20.4.1.5 Energy and Economic Security
  • 20.4.2 Challenges
  • 20.4.2.1 Nonuniformity in Agroindustrial?Wastes
  • 20.4.2.2 Collection, Storage,?and Segregation
  • 20.4.2.3 Social Perspectives
  • 20.4.2.4 Technology
  • 20.5 AGROINDUSTRIAL WASTE BIOREFINERY: ENGINEERING BREAKTHROUGHS
  • 20.5.1 Continuous Countercurrent Extruder Reactor
  • 20.5.2 Rapid Integrated Continuous Countercurrent Hydrolysis
  • 20.5.3 Microalgae-Based Biorefinery Processes
  • 20.6 CONCLUSIONS
  • 21 - Integrated Biorefinery for Food, Feed, and Platform Chemicals
  • 21.1 INTRODUCTION TO THE BIOREFINERY CONCEPT
  • 21.1.1 Lignocellulosic Biorefinery
  • 21.1.2 Whole Crop Biorefinery:?Technical and Energetic?Assessment
  • 21.1.3 Green Biorefinery
  • 21.1.4 Two-Platform Concept?Biorefinery
  • 21.2 CURRENT BIOFUELS SCENARIO
  • 21.3 NONRENEWABLE AND RENEWABLE RESOURCES
  • 21.4 GREEN CHEMISTRY INSPIRATION
  • 21.5 PLATFORM MOLECULES
  • 21.6 IMPORTANCE OF CATALYSTS IN?BIOMASS CONVERSION FOR FOOD,?FEED, AND PLATFORM CHEMICALS
  • 21.7 CONCLUSION
  • 22 - Integrated Biorefinery for Bioenergy and Platform Chemicals
  • 22.1 INTEGRATED BIOREFINERY?OF BIODIESEL AND PLATFORM CHEMICALS
  • 22.1.1 Biodiesel
  • 22.1.2 Oil Source and Characteristics
  • 22.1.3 Biorefining and Bioconversion
  • 22.1.4 Platform Chemicals
  • 22.2 INTEGRATED BIOREFINERY OF BIOETHANOL AND PLATFORM CHEMICALS
  • 22.2.1 Sources
  • 22.2.2 Pretreatment
  • 22.2.3 Conversion
  • 22.3 INTEGRATED BIOREFINERY OF?PLATFORM CHEMICALS AND BIOGAS PRODUCTION
  • 22.3.1 Production Through Anaerobic Digestion
  • 22.3.2 Biomass Resources
  • 22.3.3 Pretreatment of Biomass
  • 22.4 AGROINDUSTRIAL WASTES AS FEEDSTOCK?FOR BIOENERGY AND PLATFORM?CHEMICALS
  • 22.4.1 Cellulose and Hemicellulose
  • 22.4.2 Lignin
  • 22.4.3 Energy and Platform?Chemicals
  • 22.4.4 Future Outlook of Agrowaste Conversion
  • 23 - Microbiology of Platform Chemical Biorefinery and Metabolic Engineering
  • 23.1 HISTORY AND CURRENT SCENARIO OF?FOSSIL FUELS
  • 23.2 ORIGIN, DEFINITION, AND TYPES?OF BIOREFINERIES IN THE WORLD?SCENARIO
  • 23.2.1 First-Generation?Biorefineries
  • 23.2.2 Second-Generation?Biorefineries
  • 23.2.3 Third-Generation?Biorefineries
  • 23.3 APPLICATION OF MICROBIOLOGY?IN BIOREFINERIES
  • 23.3.1 Butanol Production
  • 23.3.2 Clostridial Acetone-Butanol-Ethanol Fermentation
  • 23.3.3 Acidogenic Phase
  • 23.3.4 Solventogenic Phase
  • 23.3.5 Some of the Limitations?Associated With?Acetone-Butanol-Ethanol Fermentation
  • 23.4 METABOLIC ENGINEERING OF MICROORGANISMS IN BIOREFINERY
  • 23.4.1 Engineered Acetone-Butanol-Ethanol Fermentation?Pathway
  • 23.4.1.1 Method 1: Inserting Genes in the?Pathway
  • 23.4.1.2 Method 2: Deleting Genes Involved in?the Pathway
  • 23.4.1.3 Method 3:?Replacement?of Enzyme
  • 23.4.1.4 Method 4: Expression?of Heterologous Genes?in the Acetone-Butanol-Ethanol Pathway
  • 23.5 OMICS DATA FOR VARIOUS?ENVIRONMENTAL AND GENETIC PERTURBATIONS
  • 23.5.1 Modeling of Metabolic?Pathways
  • 23.5.2 Stoichiometric Modeling of Metabolic Networks
  • 23.5.3 Valuable Mathematical and Experimental Tools
  • 23.6 CONCLUSION
  • 24 - Enzymes in Platform Chemical Biorefinery
  • 24.1 INTRODUCTION TO ENZYMES AND?THEIR MODES OF ACTION
  • 24.2 CHEMICAL CATALYSIS VERSUS BIOCATALYSIS
  • 24.3 ADVANTAGES OF BIOCATALYST-BASED PROCESSES
  • 24.4 IMPORTANCE OF BIOCATALYSTS OVER CHEMICAL CATALYSTS
  • 24.5 ENZYMES IN BIOREFINERY
  • 24.6 PRETREATMENT PROCESS IN?BIOREFINERY
  • 24.7 ENZYMATIC ACTIVITY IN THE?PRETREATMENT PROCESS
  • 24.8 CELLULOSE DEGRADATION
  • 24.9 HEMICELLULOSE TREATMENT
  • 24.10 WHY MODERN ERA INDUSTRIES?PREFER ENZYMES OVER?CONVENTIONAL CHEMICALS?
  • 24.11 CLASSIFICATION OF LIGNOCELLULOSE-DEGRADING ENZYMES
  • 24.11.1 Classification-1
  • 24.11.2 Classification-2
  • 24.11.3 Lignocellulosic-Degrading Enzymes and Their?Functions
  • 24.11.3.1 Cellulases
  • 24.12 ENZYME TECHNOLOGY IN?BIOREFINERIES
  • 24.12.1 Corn-to-Ethanol?Biorefinery
  • 24.12.2 Processing of Lignocelluloses?to Bioethanol
  • 24.12.3 Process Description
  • 24.13 DEVELOPMENT OF NEW ENZYMES?FOR EFFECTIVE BIOREFINERY?OPERATION
  • 24.14 CONCLUSION
  • 25 - Process Design and Optimization for Platform Chemical Biorefinery
  • 25.1 INTRODUCTION
  • 25.2 PRODUCTION OF C3 PLATFORM?CHEMICALS
  • 25.2.1 Propionic Acid
  • 25.2.2 Process Strategies
  • 25.2.3 1,3-Propanediol
  • 25.2.4 1,3-Propanediol Production
  • 25.2.5 Purification of 1,3-Propanediol
  • 25.2.6 3-Hydroxy-propionic Acid
  • 25.2.7 Metabolic Pathway Governing 3-Hydroxy-propionic Acid Production
  • 25.2.8 Optimization of 3-Hydroxy-propionic Acid Production: Metabolic Engineering?Approach
  • 25.3 COPRODUCTION OF?3-HYDROXY-PROPIONIC ACID AND?1,3-PROPANEDIOL
  • 25.4 CONCLUSION
  • 26 - Case Studies on the Industrial Production of Renewable Platform Chemicals
  • 26.1 AN OVERVIEW OF DIFFERENT RENEWABLE PLATFORM CHEMICALS PRODUCED AT INDUSTRIAL SCALE
  • 26.2 NATURE OF THE PROCESSES, FEEDSTOCK CONVERSION, AND PRODUCT RECOVERY EFFICIENCY
  • 26.3 CHANGE OF PRODUCTION VOLUME?OVER TIME
  • 26.4 PRODUCT QUALITY AND PROCESS COST
  • 26.5 PRESENT APPLICATIONS AND POTENTIAL MARKET
  • 26.6 CONCLUSION
  • Acknowledgments
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

202,30 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok