Mechatronics

Electronics in Products and Processes
 
 
Routledge (Verlag)
  • erschienen am 27. April 2018
  • |
  • 528 Seiten
 
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-1-351-43238-2 (ISBN)
 
Mechatronics: Electronics in Products and Processes identifies the concepts which underpin the mechatronic approach to engineering design and brings together its principle components - sensors and transducers, embedded microprocessors, actuators and drives - to explore their interrelationships. The text focuses primarily on hardware elements and the impact of system architecture. Modern technology is set in an historical background and each chapter comes with learning objectives and chapter outlines. The book includes numerous case studies illustrating the concepts applied in such areas as automatic cameras, aerospace parts manufacturing, fly-by-wire systems, and boat autopilot.
  • Englisch
  • Boca Raton
  • |
  • USA
Taylor & Francis Ltd
  • Für höhere Schule und Studium
978-1-351-43238-2 (9781351432382)
weitere Ausgaben werden ermittelt
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • 1: What is mechatronics?
  • 1.1 Mechatronics in manufacturing
  • 1.2 Mechatronics in products
  • 1.3 Mechatronics and engineering design
  • 1.3.1 A modular approach to mechatronics and engineering design
  • 1.4 The engineer and mechatronics
  • 1.5 Mechatronics and technology
  • Part One: Sensors and Transducers
  • 2: Measurement systems
  • 2.1 Sensors, transducers and measurement
  • 2.2 Classification
  • 2.2.1 Classification by function
  • 2.2.2 Classification by performance
  • 2.2.3 Classification by output
  • 2.3 Developments in transducer technology
  • 2.3.1 Solid state transducers
  • 2.3.2 Optical transducers
  • 2.3.3 Piezoelectric transducers
  • 2.3.4 Ultrasonic transducers
  • 2.4 Signal processing and information management
  • 2.5 The design of a measurement system
  • 3: Resistive, capacitive, inductive and resonant transducers
  • 3.1 Resistive transducers
  • 3.1.1 Potentiometers
  • 3.1.2 Strain gauges
  • 3.1.3 Resistive temperature transducers
  • 3.2 Capacitive transducers
  • 3.3 Inductive transducers
  • 3.3.1 Linear variable differential transformer
  • 3.3.2 Linear variable inductive transducer
  • 3.3.3 The inductosyn
  • 3.3.4 Inductive velocity transducers
  • 3.4 Thermoelectric transducers
  • 3.5 Resonant transducers
  • 3.5.1 Vibrating wire transducers
  • 3.5.2 Vibrating beam transducers
  • 3.5.3 Vibrating cylinder transducers
  • 4: Optical measurement systems
  • 4.1 Radiant energy sources
  • 4.1.1 Incandescent lamps
  • 4.1.3 Light emitting diodes
  • 4.1.2 Discharge lamps
  • 4.1.4 Lasers
  • 4.1.5 Illumination
  • 4.2 Photodetectors
  • 4.2.1 Thermal photodetectors
  • 4.2.2 Quantum photodetectors
  • 4.2.3 Array detectors
  • 4.3 Vision systems
  • 4.3.1 Image processing
  • 4.4 Laser scanning
  • 4.5 Fibre optic transducers
  • 4.5.1 Intensity modulation
  • 4.5.2 Phase modulation
  • 4.5.3 Modulation of the angle of polarization
  • 4.5.4 Modulation of wavelength and spectral distribution
  • 4.6 Non-fibre optical transducers
  • 4.6.1 Optical encoders
  • 4.6.2 Tactile sensing
  • 4.6.3 Triangulation
  • 5: Solid state sensors and transducers
  • 5.1 Magnetic measurements
  • 5.1.1 Hall effect
  • 5.1.2 Magnetoresistor
  • 5.1.3 Magnetodiode
  • 5.1.4 Magnetotransistor
  • 5.2 Temperature measurements
  • 5.2.1 Thermistor
  • 5.2.2 Thermodiodes and thermotransistors
  • 5.2.3 Seebeck effect devices
  • 5.2.4 Solid state pyrometers
  • 5.3 Mechanical measurements
  • 5.3.1 Strain
  • 5.3.2 Force
  • 5.4 Chemical measurements
  • 5.4.1 Humidity
  • 5.4.2 Gas detectors
  • 6: Piezoelectric and ultrasonic sensors and transducers
  • 6.1 Piezoelectric devices
  • 6.1.1 Accelerometers
  • 6.1.2 Humidity measurement
  • 6.1.3 Surface acoustic wave devices
  • 6.1.4 Light modulation
  • 6.1.5 Piezoelectric actuators
  • 6.2 Ultrasonic systems
  • 6.2.1 Sources
  • 6.2.2 Coupling of the source
  • 6.2.4 Ultrasonic flow measurement
  • 6.2.3 Receivers
  • 6.2.5 Ultrasonic distance measurement
  • 6.2.6 Ultrasonic measurement using variation in transmission velocity
  • 6.2.7 Ultrasonic imaging
  • 7: Interference and noise in measurement
  • 7.1 Interference
  • 7.1.1 Common mode rejection ratio
  • 7.1.2 Ground or earth loops
  • 7.1.3 Electrostatic interference: screening and guarding
  • 7.1.4 Electromagnetic interference
  • 7.1.5 Power supplies as a source of interference
  • 7.2 Noise
  • 7.2.1 White and coloured noise
  • 7.2.2 Sources of noise
  • 7.2.4 Signal-to-noise ratio
  • 7.2.3 Noise factor
  • 8: Signal processing
  • 8.1 Operational amplifiers
  • 8.1.1 Integrator
  • 8.1.2 Buffer amplifier
  • 8.1.3 Current to voltage converter
  • 8.1.4 Voltage to current converter
  • 8.1.5 Logarithmic amplifier
  • 8.1.6 Charge amplifier
  • 8.1.7 Differential amplifier
  • 8.1.8 Comparator
  • 8.1.9 Schmitt trigger amplifier
  • 8.2 Practical operational amplifiers
  • 8.2.1 Amplifier errors
  • 8.2.2 Chopper stabilized amplifiers
  • 8.2.3 Auto-zeroing amplifier
  • 8.3 Signal isolation
  • 8.3.1 Isolation amplifier
  • 8.3.2 Opto-isolation
  • 8.3.3 Transformer isolation
  • 8.4 Phase sensitive detector
  • 8.4.1 Phase locked loop
  • 8.5 Multiplexing
  • 8.5.1 Time division multiplexing
  • 8.5.2 Frequency division multiplexing
  • 8.6 Filters
  • 8.6.1 Analogue filters
  • 8.6.2 Digital filters: the sampling theorem
  • 8.6.3 Pre-processing and post-processing filters
  • 8.7 Digital signal processing
  • 8.7.1 Analogue to digital and digital to analogue conversion
  • 8.7.2 Signal analysis
  • 8.8 Smart sensors
  • 8.9 Expert systems, artificial intelligence and measurement
  • Part Two: Embedded Microprocessor Systems
  • 9: Microprocessors in mechatronic systems
  • 9.1 Embedded real-time microprocessor systems
  • 9.2 The mechatronic system
  • 10: The microprocessor system
  • 10.1 The system components
  • 10.2 The system bus
  • 10.3 The memory map
  • 10.4 The microprocessor bus operation
  • 11: The central processing unit
  • 11.1 CPU operation: the fetch phase
  • 11.1.1 The program counter
  • 11.1.2 The stack pointer
  • 11.1.4 Microcoded instruction decode and control
  • 11.1.3 Instruction decode and control
  • 11.1.5 Hard wired control units
  • 11.2 CPU operation: the execution phase
  • 11.2.1 The arithmetic and logic unit and the accumulator
  • 11.2.2 The processor status register
  • 11.2.3 The register bank
  • 11.3 Interrupt processing
  • 11.3.1 Register stacking and context switching
  • 11.3.2 Systems with multiple interrupt sources
  • 11.3.3 Non-vectored interrupts
  • 11.3.4 Vectored interrupts
  • 11.3.5 Multiple interrupt processing
  • 11.3.6 Non-maskable interrupts and CPU reset
  • 11.4 The central processor unit instruction set
  • 11.5 Addressing modes
  • 11.5.1 Immediate addressing
  • 11.5.2 Direct addressing
  • 11.5.3 Paged addressing
  • 11.5.4 Indirect addressing
  • 11.5.5 Indexed addressing
  • 11.5.6 Relative addressing
  • 11.5.7 Stack addressing
  • 11.6 CISC and RISC instruction sets
  • 12: Semiconductor memory, input and output, and peripheral circuits
  • 12.1 Semiconductor memory devices
  • 12.1.1 Read only memory
  • 12.1.2 Read/write memories
  • 12.2 Input and output devices
  • 12.2.1 Parallel I/O
  • 12.2.2 Interrupt support
  • 12.2.3 Data transfer using handshaking
  • 12.2.4 Serial I/O
  • 12.2.5 Analogue to digital and digital to analogue converters
  • 12.3 Peripheral circuits
  • 12.3.1 Programmable counter/timers
  • 12.3.2 Direct memory access
  • 12.3.3 Interrupt controllers
  • 12.4 Coprocessors
  • 12.5 Microprocessor types
  • 12.5.1 Microcontrollers
  • 12.5.2 Example: the National Semiconductor HPC16083 microcontroller
  • 12.5.3 Digital signal processors
  • 13: Semi-custom devices, programmable logic and device technology
  • 13.1 Application specific integrated circuits
  • 13.1.1 Gate arrays
  • 13.1.2 Standard cell and functional block ASICs
  • 13.1.3 Analogue ASICs
  • 13.2 Programmable logic devices
  • 13.2.1 The programmable read only memory
  • 13.2.2 The programmable logic array
  • 13.2.3 Programmable array logic
  • 13.2.4 Programming and reprogramming programmable logic devices
  • 13.3 Semiconductor technologies
  • 13.3.1 Some important characteristics
  • 13.3.2 MOS technologies
  • 13.3.3 Bipolar technologies
  • 14: The development of microprocessor systems
  • 14.1 The system specification
  • 14.2 The development environment
  • 14.3 The development cycle
  • 14.3.1 The editor: entering the source program
  • 14.3.2 Compilation and assembly: the generation of object code
  • 14.3.3 Linking: relocatable and absolute object code
  • 14.3.4 Object code libraries
  • 14.3.5 Emulation and debugging
  • 14.4 Assemblers, linkers and assembly language
  • 14.4.1 An assembler program example
  • 14.5 High level programming languages and compilers
  • 14.6 The real-time multitasking executive
  • 14.6.1 Tasks and task scheduling
  • 14.6.2 Intertask communications and synchronization
  • 14.6.3 Timing
  • 14.6.4 Memory manager
  • 14.6.5 An application example
  • 15: Communications
  • 15.1 Control and communication system hierarchies
  • 15.2 Local area networks
  • 15.2.1 Standards and the communication system reference model
  • 15.2.2 LAN standards
  • 15.2.3 LAN topology
  • 15.2.4 LAN frame structure and medium access techniques
  • 15.3 A communications system hierarchy for industrial automation applications
  • 15.3.1 The manufacturing automation protocol
  • 15.3.2 The enhanced performance architecture (EPA) MAP
  • 15.3.3 Fieldbus
  • Part Three: Motion Control
  • 16: Drives and Actuators
  • 17: Control devices
  • 17.1 Electrohydraulic control devices
  • 17.1.1 Flapper controlled electrohydraulic servovalve
  • 17.1.2 Proportional solenoid Controlled Electrodynamic Value
  • 17.1.3 Simple flapper orifice
  • 17.2 Electropneumatic proportional controls
  • 17.2.1 Direct proportional controls for pressure and flow
  • 17.2.2 Pulse width modulation control of solenoid valves
  • 17.3 Control of electrical drives: power semiconductor devices
  • 17.3.1 Diodes
  • 17.3.2 Thyristors
  • 17.3.3 Gate turn-off thyristors
  • 17.3.4 Triacs
  • 17.3.5 Power transistors
  • 17.3.6 Power MOSFETs
  • 17.3.8 Smart power devices
  • 17.3.7 Insulated gate bipolar transistors
  • 17.3.9 Heat transfer and cooling
  • 17.3.10 Protection
  • 17.4 Converters, choppers, inverters and cycloconverters
  • 17.4.1 Naturally commutated thyristor converters
  • 17.4.2 DC choppers
  • 17.4.3 Inverters
  • 17.4.4 Cycloconverters
  • 18: Linear systems
  • 18.1 Pneumatic rams: rod type
  • 18.2 Pneumatic rams: rodless type
  • 18.3 Pneumatic diaphragms
  • 18.4 Pneumatic bellows
  • 18.5 Hydraulic cylinders
  • 18.6 Motor and ball screw
  • 18.7 Motor and leadscrew
  • 18.8 Direct linear electrical actuators
  • 18.9 Solenoids
  • 18.10 Other forms of electrical actuator
  • 19: Rotational drives
  • 19.1 Pneumatic motors: continuous rotation
  • 19.2 Pneumatic motors: limited rotation
  • 19.3 Hydraulic motors: continuous rotation
  • 19.3.1 Gear motors
  • 19.3.2 Vane motors
  • 19.3.3 Axial piston motors
  • 19.3.4 Radial piston motors
  • 19.3.5 General characteristics of rotational hydraulic transmissions
  • 19.4 Hydraulic motors: limited rotation
  • 19.5 Electrical motors
  • 19.5.1 DC machines
  • 19.5.2 DC variable speed drives
  • 19.5.3 DC servomotors
  • 19.5.4 Induction machine^
  • 19.5.5 AC variable speed drives
  • 19.5.6 Stepper motors
  • 19.5.7 Synchronous machines
  • 19.5.8 Brushless machines
  • 19.5.9 Switched reluctance motors
  • 19.5.10 Toroidal torque motor
  • 19.5.11 Electrical variable speed drive characteristics
  • 20: Motion converters
  • 20.1 Fixed ratio motion converters
  • 20.1.1 Parallel shaft gears
  • 20.1.2 Epicyclic gears
  • 20.1.3 Harmonic drives
  • 20.1.4 Worm and bevel gears
  • 20.1.5 V belt drives
  • 20.1.6 Toothed belt drivers
  • 20.1.7 Chains and sprockets
  • 20.1.8 Friction wire wrap drives
  • 20.1.9 Rack and pinion
  • 20.1.10 Screw nut systems
  • 20.2 Motion converters with invariant motion profile
  • 20.2.1 Cams
  • 20.2.2 Indexing mechanisms
  • 20.2.3 Linkages
  • 20.2.4 Springs and dampers
  • 20.3 Variators (continuously variable transmissions)
  • 20.3.1 Conical pulley/disc systems
  • 20.3.2 Ball/disc friction drive systems
  • 20.3.3 Unit hydraulic transmissions
  • 20.4 Remotely controlled couplings
  • Part Four: Systems and Design
  • 21: Mechanical systems and design
  • 21.1 Tradition versus mechatronics
  • 21.2 The mechatronic approach
  • 21.2.1 Replacement of mechanisms
  • 21.2.2 Simplification of mechanisms
  • 21.2.3 Enhancement of mechanisms
  • 21.2.4 Synthesis of mechanisms
  • 21.3 Control
  • 21.3.1 Program control
  • 21.3.2 Adaptive control
  • 21.3.3 Distributed systems
  • 21.4 The design process
  • 21.4.1 Need
  • 21.4.2 Feasibility
  • 21.4.3 Specification
  • 21.4.4 Conceptual design
  • 21.4.5 Analysis and modelling
  • 21.4.6 Embodiment and optimization
  • 21.4.7 Detail design
  • 21.5 Types of design
  • 21.6 Integrated product design
  • 21.6.1 Project management
  • 21.6.2 Planning and implementation of facilities
  • 22: Mechanisms
  • 22.1 Load conditions
  • 22.1.1 Actuator requirements
  • 22.1.2 Attaining partial static balance
  • 22.1.3 Articulation requirements
  • 22.1.4 Speed versus accuracy
  • 22.1.5 Minimization of kinetic energy
  • 22.1.6 Power transmission over a distance
  • 22.1.7 Effects of assembly play and friction
  • 22.1.8 Inertia
  • 22.2 Design
  • 22.2.1 Materials
  • 22.2.2 Sizing of actuators
  • 22.3 Flexibility
  • 22.3.1 Resilience
  • 22.3.2 Backlash
  • 22.3.3 Vibration
  • 22.4 Modelling and simulation
  • 22.4.1 GRASP
  • 22.4.2 ADAMS/DRAMS
  • 23: Structures
  • 23.1 Load conditions
  • 23.1.1 Static loading
  • 23.1.2 Dynamic and cyclic loading
  • 23.1.3 Impulse and shock loading
  • 23.2 Flexibility
  • 23.2.1 Flexible structures
  • 23.2.2 Vibration effects
  • 23.2.3 Materials
  • 23.3 Environmental isolation
  • 23.4 Modelling
  • 23.5 Systems
  • 24: Man-machine interface
  • 24.1 Industrial design and ergonomics
  • 24.1.1 Aesthetics and style
  • 24.1.2 Ergonomics
  • 24.2 Information transfer: from machine to man
  • 24.2.1 Human responses to stimuli
  • 24.3 Information transfer: from man to machine
  • 24.4 Safety
  • 24.4.1 Operator safety
  • 24.4.2 System safety
  • Part Five: Case Studies
  • 25: Introduction to case studies
  • 26: Canon EOS autofocus cameras
  • 26.1 Main microprocessor
  • 26.2 Exposure control
  • 26.2.1 Diaphragm drive system
  • 26.3 Autofocus
  • 26.3.1 The BASIS sensor
  • 26.3.2 Depth of field setting
  • 26.3.3 Focusing drives
  • 26.4 Lens microprocessor
  • 26.5 Film transport system
  • 27: Fly-by-wire
  • 27.1 The EAP systems architecture and flight control system
  • 27.2 The flight control computers
  • 27.3 MIL-STD-1553: a digital data transmission system for military applications
  • 28: British aerospace small parts flexible manufacturing system
  • 28.1 Billet preparation
  • 28.2 Steel and titanium parts
  • 28.3 Aluminium parts
  • 28.4 Control
  • 29: Autohelm 800 boat autopilot
  • Appendix A: Definitions and terminology
  • Appendix B: Inertial loads
  • B.l Tangentially driven loads
  • B.1.1 Systems with a ratio change
  • B.2 Leadscrew driven loads
  • Bibliography
  • Index

Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

76,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen