Advances in Human Error, Reliability, Resilience, and Performance

Proceedings of the AHFE 2017 International Conference on Human Error, Reliability, Resilience, and Performance, July 17-21,2017, The Westin Bonaventure Hotel,Los Angeles, California, USA
 
 
Springer (Verlag)
  • erschienen am 16. Juni 2017
  • |
  • XIV, 366 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-60645-3 (ISBN)
 

This book brings together studies broadly dealing with human error from different disciplines and perspectives. They concern human performance; human variability and reliability analysis; medical, driver and pilot error, as well as automation error; reports on root cause analyses; and the cognitive modeling of human error. In addition, they highlight cutting-edge applications in safety management, defense, security, transportation, process controls, and medicine, as well as more traditional fields of application.

Based on the AHFE 2017 International Conference on Human Error, Reliability, Resilience, and Performance, held on July 17-21, 2017 in Los Angeles, California, USA, the book includes experimental papers, original reviews, and reports on case studies, as well as meta-analyses, technical guidelines, best practice and methodological papers. It offers a timely reference guide for researchers and practitioners dealing with human error in a diverse range of fields.

<

weitere Ausgaben werden ermittelt

Ronald L. Boring, Ph.D., is a principal human factors scientist at Idaho National Laboratory. Prior to joining Idaho National Laboratory, he worked as a human reliability scientist at Sandia National Laboratories, where he was involved in projects for the US Nuclear Regulatory Commission and the US Department of Energy. He has also worked as a usability engineer for the Microsoft Corporation and Expedia Corporation, and as a guest researcher in human-computer interaction at the National Research Council of Canada. He recently completed a one-year assignment as a visiting scientist at the Halden Reactor Project in Norway. Dr. Boring has a BA in Psychology and German from the University of Montana, an MA in Human Factors and Experimental Psychology from New Mexico State University, and a PhD in Cognitive Science from Carleton University. He was a Fulbright Academic Scholar to the University of Heidelberg, Germany. He has published over 100 research articles in a wide variety of human reliability, human factors, and human- computer interaction forums. He has served on the organizing committees for international conferences held by the Human Factors and Ergonomics Society, IEEE, and the Association for Computing Machinery.

  • Intro
  • Advances in Human Factors and Ergonomics 2017
  • Preface
  • Contents
  • Human Reliability Analysis
  • Evaluation and Consolidation of the HEART Human Reliability Assessment Principles
  • Abstract
  • 1 Introduction
  • 2 Methodology
  • 2.1 Assessing the Error Producing Conditions
  • 2.2 Assessing Generic Task Type Data
  • 3 Results
  • 3.1 Revised EPCs
  • 3.2 New Error Producing Conditions
  • 3.3 Generic Task Type Findings
  • 4 Discussion
  • 5 Conclusion
  • References
  • Assessing Dependency in SPAR-H: Some Practical Considerations
  • Abstract
  • 1 Concept of Dependency
  • 2 The Challenge of When to Apply Dependency
  • 3 Guidance for Application of Dependency
  • 4 Conclusions
  • References
  • Simulation-Based Optimization of Resilient Communication Protocol for Nuclear Power Plant Outages
  • Abstract
  • 1 Introduction
  • 2 A Method for Optimizing the Communication Protocols Used in NPP Outages
  • 2.1 Outage Workflow Process Modeling
  • 2.2 Identifying and Modeling Uncertainties in the Test Case Workflow
  • 2.3 Communication Process Modeling
  • 2.4 Optimize the Parameters in the Communication Protocol
  • 3 Simulation-Based Communication Protocol Optimization Result
  • 3.1 Impact of Different Follow-Up Intervals on the Workflow Duration
  • 3.2 Impacts of Different Follow-up Intervals on the Probability of Critical Path Change
  • 4 Discussion
  • 5 Conclusion
  • Acknowledgements
  • References
  • Task and Procedure Level Primitives for Modeling Human Error
  • Abstract
  • 1 The Importance of Subtasks in Human Reliability Analysis
  • 2 GOMS-HRA for Subtask Modeling
  • 3 Introducing Procedure Level Primitives
  • 4 Discussion
  • 4.1 Complex Mappings
  • 4.2 The Problem with Procedures
  • 4.3 Advantages of PLPs
  • Acknowledgements
  • References
  • Operator Timing of Task Level Primitives for Use in Computation-Based Human Reliability Analysis
  • Abstract
  • 1 Introduction
  • 2 GOMS-HRA Based Virtual Operator Model Development
  • 2.1 Goms-Hra
  • 2.2 Defining GOMS-HRA Task Level Primitives
  • 2.3 Assigning Timing Values to the GOMS-HRA Task Level Primitives
  • 3 Operator Timing Station Blackout Example
  • 3.1 Defining Nominal Timing Data for HEPs
  • 4 Conclusions
  • Acknowledgments
  • References
  • A Systematic Method to Build a Knowledge Base to be Used in a Human Reliability Analysis Model
  • Abstract
  • 1 Introduction
  • 2 Method
  • 2.1 Data Collection
  • 2.2 Summarization
  • 2.3 Qualitative Content Analysis
  • 3 Application to Nuclear Severe Accidents
  • 3.1 Data Collection
  • 3.2 Summarization
  • 3.3 Qualitative Content Analysis
  • 4 Discussion
  • 5 Conclusion and Future Research
  • Acknowledgments
  • References
  • Bridging Human Factors and Human Error
  • A Literature Study to Explore Empirically: What Is the Scientific Discipline of Human Factors and What Makes It Distinct from Other Related Fields
  • Abstract
  • 1 Introduction
  • 2 Method
  • 3 Results
  • 3.1 Car Driving
  • 3.2 Physical Workload
  • 3.3 Human-Automation Interaction
  • 3.4 Design and Usability
  • 3.5 Human Machine Interface (Display, Controls and Alarms)
  • 3.6 Mental Workload
  • 3.7 Cognition
  • 3.8 Team Work
  • 3.9 Training/Simulations
  • 3.10 Anthropometry
  • 3.11 Virtual Reality
  • 3.12 Safety
  • 3.13 Human Reliability
  • 3.14 Procedures
  • 3.15 Human Factor Method
  • 3.16 Cyber Security
  • 3.17 Physical Environment
  • 3.18 Stress
  • 3.19 Dynamic System Modeling
  • 3.20 Psychomotor Test
  • 4 Method Used and Level Studied in the Papers
  • 5 Discussion
  • 6 Conclusion
  • References
  • Use of Risk Information to Support NRC Human Factors License Amendment Reviews, Inspections, and Research
  • Abstract
  • 1 Introduction
  • 2 Overview of the Human Factors Review Model and Risk Assessment Framework at the NRC
  • 2.1 Human Factors Review Model
  • 2.2 Human Reliability Analysis Process and Resulting Risk Information
  • 3 Use of Risk Information in NRC Human Factors Processes
  • 3.1 Treatment of Important Human Actions in NUREG-0711
  • 3.2 Scaling Operator Manual Action Reviews Based on Risk
  • 3.3 Informal Use of Risk During HSI Design Reviews
  • 3.4 Risk Considerations in Human Factors Research
  • 4 Observations and Discussion
  • 4.1 Increased Efficiency: Prioritizing Review Areas and Reducing Requests for Additional Information
  • 4.2 Schedule Slippage When Risk Assessment Is Complex
  • 4.3 Concerns for Using Risk Information
  • 4.4 Development of Human Factors and Risk Assessment Skills at the NRC
  • 4.5 Risk-Informed Principle for NRC Regulatory Activities
  • 5 Conclusions
  • Acknowledgments
  • References
  • Task Analysis as a Cornerstone Technique for Human Reliability Analysis
  • Abstract
  • 1 Introduction and Background
  • 1.1 The Problem with HRA
  • 2 A Quick Overview of Task Analysis
  • 2.1 Task Analysis as a Cornerstone Technique for HRA
  • 3 The Task Analysis Library Concept
  • 3.1 What Makes Task Analysis Difficult?
  • 3.2 The Purpose of the Task Analysis Library
  • 3.3 The Structure of the Task Analysis Library
  • 4 Conclusions
  • References
  • Combination of Human Reliability Analysis and Task Analysis in Human Factors Engineering
  • Abstract
  • 1 Introduction
  • 2 Interaction Between HRA and Task Analysis
  • 3 Procedure of Combination of HRA and Task Analysis
  • 3.1 Identification of Risk Important Human Actions
  • 3.2 Selection of Task Scenarios
  • 3.3 Confirmation of Scenario Strategies and Task Sequences
  • 3.4 Task Sequence Analysis
  • 3.5 Workload Analysis
  • 3.6 Identification of Potential Human Errors and Mechanism Analysis
  • 3.7 Verification and Adjustment of HRA Assumptions
  • 3.8 Summary Report
  • 4 Conclusion
  • References
  • Human Error and Resilience in Safety-Critical Domains
  • From Reason and Rasmussen to Kahneman and Thaler: Styles of Thinking and Human Reliability in High Hazard Industries
  • Abstract
  • 1 Introduction
  • 1.1 An Example
  • 1.2 System 1 and System 2 Thinking
  • 1.3 The Generic Error Modelling System
  • 2 GEMS and System 1 Thinking
  • 2.1 Which Level of Error Does System 1 Thinking Produce?
  • 2.2 Is Anything Missing from GEMS?
  • 3 Issue Arising
  • 3.1 Looking Through a System 1 "Lens"
  • 3.2 Failure Modes and Proximate Causes
  • 3.3 Performance Shaping Factors
  • 4 Conclusions
  • References
  • Epic Human Failure on June 30, 2013
  • Abstract
  • 1 Introduction
  • 2 Wildland Firefighting Rules
  • 3 Environmental Influences
  • 3.1 Fuels, Fire Weather, and Topography
  • 4 Human Failure Theory
  • 4.1 Individual Blame and Organizational Factors
  • 4.2 Abilene Paradox and Groupthink
  • 4.3 The Morality of Obeying Stupid Orders
  • 4.4 Public Decisions
  • 5 Organizational Culture and Influences
  • 5.1 Human Factor Barriers to Situation Awareness
  • 5.2 PFD Attitude and Influence
  • 5.3 The Marine Corps Viewpoint and Influence
  • 5.4 High Reliability Organizations (HRO)
  • 6 Conclusion
  • Acknowledgements
  • References
  • A Systematic Framework for Root-Cause Analysis of the Aliso Canyon Gas Leak Using the AcciMap Methodology
  • Abstract
  • 1 Introduction
  • 1.1 Overview
  • 1.2 Background
  • 1.3 Kill Procedure Attempts
  • 2 Rasmussen's Risk Management Framework and AcciMap Methodology
  • 3 The AcciMap Framework of the Aliso Canyon Gas Leak
  • 3.1 Government and Regulators
  • 3.2 Parent Company (Sempra Energy) and Other Organizations
  • 3.3 The SoCal Gas Company
  • 3.4 Technical and Operational Management and Crew
  • 3.5 Physical Events, Processes and Conditions
  • 4 Conclusion
  • 4.1 Model Analysis
  • 4.2 Recommendations
  • References
  • Permit-to-Work Systems as a Health and Safety Risk Control Strategy in Mining: A Prospective Study in Resilience Engineering
  • Abstract
  • 1 State of Health and Safety in Australian Mining
  • 1.1 The Complexities of Mining
  • 2 Permit-to-Work (PTW) Systems
  • 2.1 Literature Review on PTW Systems
  • 2.2 Assumptions and Myths Associated with PTS
  • 3 Resilience Engineering
  • 3.1 A Conceptual Framework for Investigating RE
  • 3.2 Organizational Theories
  • 4 Conclusion
  • References
  • Modeling Framework of Team Contexts for the Design of Laboratory Experiments and Team Training
  • Abstract
  • 1 Introduction
  • 2 Related Studies
  • 2.1 Team Categorization
  • 2.2 Task Categorization
  • 2.3 Team Structure
  • 3 Building a Framework of Team Context
  • 3.1 Modeling Framework of Team Structure
  • 3.2 Discussion
  • 4 Conclusions
  • Acknowledgments
  • References
  • The Impact of Human Errors on the Estimation of Uncertainty of Measurements in Water Monitoring
  • Abstract
  • 1 Introduction
  • 2 Methodology
  • 3 Examples of Human Errors Identification
  • 3.1 Example 1: Raba River Basin Monitoring
  • 3.2 Example 2: Mining Water Monitoring
  • 3.3 Example 3: Testing Analysts
  • 4 Summary
  • Acknowledgements
  • References
  • Evaluating Expert Performance
  • Human Performance Variability in Task Execution Times Under Generic Human-System Integration Conditions in Naval Operations
  • Abstract
  • 1 Introduction
  • 2 Mechanism of Human Task Performance
  • 3 Research Method
  • 4 Discussion and Conclusion
  • Acknowledgements
  • References
  • Are We Flooding Pilots with Data? - Effects of Situational Awareness Automation Support Concepts on Decision-Making in Modern Military Air Operations
  • Abstract
  • 1 Introduction
  • 2 Deriving Relevant Information - A Prototype SA Support System
  • 3 Concept Validation
  • 4 Results
  • 5 Discussion
  • 6 Conclusions
  • References
  • Comparison of Mutual Awareness in Analog Vs. Digital Control Rooms
  • Abstract
  • 1 Introduction
  • 2 Situation Awareness
  • 3 Mutual Awareness
  • 4 Changes in Mutual Awareness Due to Technology Shift
  • 5 Communication Issues Due to Technology Shift
  • 6 Conclusions
  • Acknowledgements
  • References
  • Characteristics Analysis for the Effect of Mental Fatigue in Monitoring Task
  • Abstract
  • 1 Introduction
  • 2 Material and Method
  • 2.1 Subjects
  • 2.2 Mental Fatigue Induced Method
  • 3 Conclusions of Mental Fatigue Induced Method
  • 3.1 Performance Data
  • 3.2 EEG Data
  • 4 Conclusion
  • Acknowledgements
  • References
  • Evaluation of Decision Making Processes in Critical Situations
  • Abstract
  • 1 Introduction
  • 2 Tracing Decision Making Processes
  • 3 Evaluation of Eye Tracking for Critical Situations
  • 4 Future Work: Eye Tracking for Training Critical Situations
  • 4.1 Laboratory Experiment to Identify Relevant Performance Data
  • 4.2 Field Experiment to Evaluate Hardware Development
  • 5 Conclusion
  • References
  • Advanced Analysis Techniques for Human Error
  • Detection of Typical Progress Patterns of Industrial Incidents by Text Mining Technique
  • Abstract
  • 1 Introduction
  • 2 What We Should Extract from Accident Reports
  • 2.1 Causality is the Most Important Part of Information
  • 2.2 Limitation of Simple Text Classification Method
  • 3 Proposed Method for Incident Report Analysis
  • 4 Experiment
  • 4.1 Dataset of Aviation Incident Report
  • 4.2 Visualization Method
  • 4.3 Results and Discussion
  • 5 Conclusion
  • Acknowledgements
  • References
  • Use of a Big Data Mining Technique to Extract Relative Importance of Performance Shaping Factors from Event Investigation Reports
  • Abstract
  • 1 Introduction
  • 2 Collecting Event Reports
  • 3 Identifying Task Types
  • 4 Analyzing Event Reports
  • 5 General Conclusion
  • References
  • Text Mining for Procedure-Level Primitives in Human Reliability Analysis
  • Abstract
  • 1 Introduction
  • 2 Methods
  • 3 Analysis and Results
  • 3.1 Dimension and Noise Reduction
  • 3.2 Analysis Methods
  • 4 Results and Conclusions
  • Acknowledgments
  • References
  • The Virtual Human Reliability Analyst
  • Abstract
  • 1 Introduction
  • 2 Differences between Traditional HRA and Computer-Based HRA: Opportunities and Challenges
  • 3 Intelligent Agents
  • 3.1 AI and the Concept of the Intelligent Agent
  • 4 Implementing the Virtual Analyst
  • 4.1 Autopopulation
  • 4.2 GOMS-HRA
  • 4.3 HEP Equation
  • 4.4 Decision Making
  • 4.5 Including PSFs
  • 5 The Way Forward
  • 6 Conclusion
  • Acknowledgments
  • References
  • A Dynamic Mechanistic Model of Human Response Proposed for Human Reliability Analysis
  • Abstract
  • 1 Introduction
  • 2 Framework of the Model
  • 3 Information Perception
  • 3.1 Activation Based Approach
  • 3.2 Application of the Activation Based Approach in the Mechanistic Model
  • 4 Human Reasoning and Decision Making
  • 4.1 Knowledge Base
  • 4.2 Activation Propagation
  • 4.3 Illustration of Activation Propagation
  • 4.4 Integration of Internal Factors
  • 5 Discussion and Conclusion
  • Acknowledgments
  • References
  • Human Reliability and Human Factors Research
  • A Framework for Understanding Operator Decision Making in Simulated Nuclear Power Plant Cyber Attacks
  • Abstract
  • 1 Introduction
  • 2 Applied Cognitive Task Analysis
  • 2.1 Task Diagram
  • 2.2 Knowledge Audit
  • 2.3 Simulation Interview
  • 3 Critical Decision Method
  • 4 Expertise
  • 5 Future Steps
  • 5.1 Future Simulator Experiment
  • Acknowledgments
  • References
  • A Sound Investment: Managing Human Error in the Finance Sector
  • Abstract
  • 1 Introduction
  • 2 Project Scope
  • 3 Phase 1 - Baseline Analysis
  • 4 Phase 2 - Detailed Analysis on Server Provisioning Capability
  • 4.1 Phase 2a - Detailed Usability Analysis on Server Provisioning Tool
  • 4.2 Phase 2b - Detailed Analysis on Server Provisioning Processes
  • 5 Findings
  • 5.1 Process
  • 5.2 Error Detection
  • 5.3 Task Flow in Design
  • 5.4 Societal/Cultural Attitudes
  • 6 Conclusions
  • References
  • Adapting the Cognitive Framework of NUREG-2114 for Use in Human Error Analysis for AP1000 Plant Licensing in the United Kingdom
  • Abstract
  • 1 Introduction
  • 2 The Cognitive Framework of NUREG-2114
  • 3 Adapting the Cognitive Framework for Human Error Analysis
  • 4 Results and Discussion
  • 5 Conclusions
  • References
  • Effects of Information Acquisition Method on Diagnostic Task Performance Using Digitalized Interfaces
  • Abstract
  • 1 Introduction
  • 1.1 Background
  • 1.2 Literature Review
  • 2 Materials and Methods
  • 2.1 Displays with Different Information Acquisition Methods
  • 2.2 Experimental Design
  • 2.3 Participants
  • 2.4 Experimental Procedure
  • 3 Results and Analysis
  • 4 Discussion
  • 5 Conclusion
  • Acknowledgments
  • References
  • Cognitive Processes and PEMs of TSA in Digitized MCRs of NPPs
  • Abstract
  • 1 Introduction
  • 2 Forming Mechanism of TSA in Digital MCRs
  • 2.1 Cognitive Processes of ISA
  • 2.2 Cognitive Processes of SSA
  • 2.3 Cognitive Processes of MA
  • 2.4 The Performance Shaping Factors of TSA
  • 3 PEMs of TSA Errors in Digital MCRs of Digital NPPs
  • 3.1 Psychological Error Mechanisms of ISA
  • 3.2 Psychological Error Mechanism of SSA
  • 4 Conclusions and Discussions
  • Acknowledgments
  • References
  • The Effect of the Urban Bus Stop on Human-Machine Characteristics in Public Transport
  • Abstract
  • 1 Introduction
  • 2 Natural Vehicle Test Design
  • 2.1 Test Platform
  • 2.2 The Experimental Staff
  • 2.3 The Test Process
  • 2.4 Position Coordinate Method
  • 3 Analysis of Human - Machine Characteristics of Public Transport by Real Vehicle Test
  • 3.1 Driver's Perceptual Characteristics Analysis
  • 3.2 Driver's Handling Characteristics Analysis
  • 3.3 Buses' Operating Characteristics
  • 4 Conclusions
  • Acknowledgments
  • References
  • Operating Events in Chinese Nuclear Power Plants: A Preliminary Analysis
  • Abstract
  • 1 Introduction
  • 2 Methodology
  • 2.1 Data Sources
  • 2.2 Data Analysis
  • 3 Results and Discussion
  • 3.1 Trend Analysis
  • 3.2 Root Cause Analysis
  • 3.3 Experience and Lessons
  • 4 Conclusions
  • Acknowledgments
  • References
  • Description of Diagnosis Process: A Review of Existing Measures and a New Approach
  • Abstract
  • 1 Introduction
  • 2 Existing Ways to Describe the Process of Diagnosis
  • 3 A New Approach
  • 4 Conclusion
  • Acknowledgements
  • References
  • A Case Study of Human Reliability in Maquiladora Industry Manufacturing Process
  • Abstract
  • 1 Introduction
  • 2 Literature Review
  • 2.1 The Cultural Consensus Theory
  • 2.2 Analysis of Cultural Domain and the Mixed Methods of Investigation
  • 2.3 The Human Reliability
  • 3 Method
  • 4 Results
  • 4.1 Human Error
  • 4.2 Human Error Analysis
  • 4.3 Results from the Questionnaires
  • 5 Conclusions
  • References
  • Author Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

213,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

213,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen