Rotary Kilns

Transport Phenomena and Transport Processes
 
 
Butterworth-Heinemann (Verlag)
  • 2. Auflage
  • |
  • erschienen am 13. November 2015
  • |
  • 390 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803853-6 (ISBN)
 

Rotary Kilns-rotating industrial drying ovens-are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This professional reference book will be the first comprehensive book in many years that treats all engineering aspects of rotary kilns, including a thorough grounding in the thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns.

This new edition contains an updated CFD section with inclusion of recent case studies and in line with recent developments covers pyrolysis processes, torrefaction of biomass, application of rotary kilns in C02 capture and information on using rotary kilns as incinerators for hydrocarbons.


  • Provides essential information on fluid flow, granular flow, mixing and segregation, and aerodynamics during turbulent mixing and recirculation
  • Gives guidance on which fuels to choose, including options such as natural gas versus coal-fired rotary kilns
  • Covers principles of combustion and flame control, heat transfer and heating and material balances
  • New edition contains information on pyrolysis processes with low temperatures and torrefaction of biomass. It also covers calcination of petcoke, how rotary kilns are used as incinerators for chlorinated hydrocarbons.
  • Includes updated material on CFD simulation of kiln gas and solids flow with a selection of recent case studies.


Dubbed 'the kiln doctor", Dr. Boateng has an MS in thermo-fluids mechanics, and a Ph.D. in metals and materials process engineering with a focus on rotary kilns from the University of New Brunswick. He has authored and/or co-authored over 90 peer reviewed publications on energy, biofuels and biochemicals, minerals and materials process engineering in flagship journals. Dr. Boateng is now a Lead Scientist with the Agricultural Research Service of the USDA pursuing research in biofuels and bioenergy.
  • Englisch
  • USA
Elsevier Science
  • 9,80 MB
978-0-12-803853-6 (9780128038536)
0128038535 (0128038535)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Rotary Kilns Transport Phenomena and Transport Processes
  • Copyright
  • Dedication
  • Contents
  • Foreword to the First Edition
  • Foreword to the Second Edition
  • Preface to the First Edition
  • Preface to the Second Edition
  • 1 - The Rotary Kiln Evolution and Phenomenon
  • 1.1 The Rotary Kiln Evolution
  • 1.1.1 Comparison of the Rotary Kiln with Other Contactors
  • 1.2 Types of Rotary Kilns
  • 1.2.1 Wet Kilns
  • 1.2.2 Long Dry Kilns
  • 1.2.3 Short Dry Kilns
  • 1.2.4 Coolers and Dryers
  • 1.2.5 Indirect-Fired Kilns
  • References
  • 2 - Basic Description of Rotary Kiln Operation
  • 2.1 Bed Phenomenon
  • 2.2 Geometrical Features and Their Transport Effects
  • 2.3 Transverse Bed Motion
  • 2.4 Experimental Observations of Transverse Flow Behavior
  • 2.5 Axial Motion
  • 2.6 Dimensionless Residence Time
  • References
  • 3 - Freeboard Aerodynamic Phenomena
  • 3.1 Fluid Flow in Pipes: General Background
  • 3.2 Basic Equations of Multicomponent Reacting Flows
  • 3.3 Development of a Turbulent Jet
  • 3.4 Confined Jets
  • 3.5 Swirling Jets
  • 3.6 Precessing Jets
  • 3.7 The Particle-Laden Jet
  • 3.8 Dust Entrainment
  • 3.9 ID Fan
  • References
  • 4 - Granular Flows in Rotary Kilns
  • 4.1 Flow of Granular Materials (Granular Flows)
  • 4.2 The Equations of Motion for Granular Flows
  • 4.3 Particulate Flow Behavior in Rotary Kilns
  • 4.4 Overview of the Observed Flow Behavior in a Rotary Drum
  • 4.4.1 Modeling the Granular Flow in the Transverse Plane
  • 4.5 Particulate Flow Model in Rotary Kilns
  • 4.5.1 Model Description
  • 4.5.2 Simplifying Assumptions
  • 4.5.3 Governing Equations for Momentum Conservation
  • 4.5.4 Integral Equation for Momentum Conservation
  • 4.5.5 Solution of the Momentum Equation in the Active Layer of the Bed
  • 4.5.6 Velocity Profile in the Active Layer
  • 4.5.6.1 Free Surface Boundary Condition
  • 4.5.6.2 Conditions at the Interface between Plug Flow and Active Layer
  • 4.5.7 Density and Granular Temperature Profiles
  • 4.5.8 An Analytical Expression for the Thickness of the Active Layer
  • 4.5.9 Numerical Solution Scheme for the Momentum Equation
  • 4.6 Model Results and Validation
  • 4.7 Application of the Flow Model
  • References
  • Appendix 4A: Apparent Viscosity
  • Appendix 4B: Velocity Profile for Flow in the Active Layer
  • 5 - Mixing and Segregation
  • 5.1 Modeling of Particle Mixing and Segregation in Rotary Kilns
  • 5.2 Bed Segregation Model
  • 5.3 The Governing Equations for Segregation
  • 5.4 Boundary Conditions
  • 5.5 Solution of the Segregation Equation
  • 5.5.1 Strongly Segregating System (Case I)
  • 5.5.2 Radial Mixing (Case II)
  • 5.5.3 Mixing and Segregation (Case III)
  • 5.6 Numerical Solution of the Governing Equations
  • 5.7 Validation of the Segregation Model
  • 5.8 Application of Segregation Model
  • References
  • Appendix 5A: Relationship between Jetsam Loading and Number Concentration
  • Appendix 5B: Analytical Solution for Case III Using Hopf Transformation
  • 6 - Combustion and Flame
  • 6.1 Combustion
  • 6.2 Mole and Mass Fractions
  • 6.3 Combustion Chemistry
  • 6.4 Practical Stoichiometry
  • 6.5 Adiabatic Flame Temperature
  • 6.6 Types of Fuels Used in Rotary Kilns
  • 6.7 Coal Types, Ranking, and Analysis
  • 6.8 Petroleum Coke Combustion
  • 6.9 Scrap Tire Combustion
  • 6.10 Pulverized Fuel (Coal/Coke) Firing in Kilns
  • 6.11 Pulverized Fuel Delivery and Firing Systems
  • 6.12 Estimation of Combustion Air Requirement
  • 6.13 Reaction Kinetics of Carbon Particles
  • 6.14 Fuel Oil Firing
  • 6.15 Combustion Modeling
  • 6.16 Flow Visualization Modeling (Acid-Alkali Modeling)
  • 6.17 Mathematical Modeling Including CFD
  • 6.18 Gas-Phase Conservation Equations Used in CFD Modeling
  • 6.19 Particle-Phase Conservation Equations Used in CFD Modeling
  • 6.20 Emissions Modeling
  • 6.20.1 Modeling of Nitric Oxide (NOx)
  • 6.20.1.1 Fuel NOx
  • 6.20.1.2 Thermal NO
  • 6.20.1.3 Prompt NO
  • 6.20.2 Modeling of Carbon Monoxide
  • 6.21 CFD Evaluation of a Rotary Kiln Pulverized Fuel Burner
  • References
  • Appendix 6A: Calculation of Primary Requirements for 10,000lb/h Coal Combustion
  • 7 - Freeboard Heat Transfer
  • 7.1 Overview of Heat Transfer Mechanisms
  • 7.2 Conduction Heat Transfer
  • 7.3 Convection Heat Transfer
  • 7.4 Conduction-Convection Problems
  • 7.5 Shell Losses
  • 7.6 Refractory Lining Materials
  • 7.7 Heat Conduction in Rotary Kiln Wall
  • 7.8 Radiation Heat Transfer
  • 7.8.1 The Concept of Blackbody
  • 7.9 Radiation Shape Factors
  • 7.10 Radiation Exchange between Multiple Gray Surfaces
  • 7.11 Radiative Effect of Combustion Gases
  • 7.12 Heat Transfer Coefficients for Radiation in the Freeboard of a Rotary Kiln
  • 7.13 Radiative Exchange from the Freeboard Gas to Exposed Bed and Wall Surfaces
  • 7.14 Radiative Heat Transfer among Exposed Freeboard Surfaces
  • References
  • 8 - Heat Transfer Processes in the Rotary Kiln Bed
  • 8.1 Heat Transfer between the Covered Wall and the Bed
  • 8.2 Modified Penetration Model for Rotary Kiln Wall-to-Bed Heat Transfer
  • 8.3 Effective Thermal Conductivity of Packed Beds
  • 8.4 Effective Thermal Conductivity in Rotating Bed Mode
  • 8.5 Thermal Modeling of Rotary Kiln Processes
  • 8.6 Description of the Thermal Model
  • 8.7 One-Dimensional Thermal Model for Bed and Freeboard
  • 8.8 Two-Dimensional Thermal Model for the Bed
  • 8.9 The Combined Axial and Cross-Sectional Model-The Quasi-Three-Dimensional Model for the Bed
  • 8.10 Solution Procedure
  • 8.11 Model Results and Application
  • 8.12 Single-Particle Heat Transfer Modeling for Expanded Shale Processing
  • References
  • 9 - Mass and Energy Balance
  • 9.1 Chemical Thermodynamics
  • 9.2 Gibbs Free Energy and Entropy
  • 9.3 Global Heat and Material Balance
  • 9.4 Thermal Module for Chemically Reactive System
  • 9.5 Mass Balance Inputs
  • 9.6 Chemical Compositions
  • 9.7 Energy Balance Inputs
  • 9.8 Site Survey-Measured Variables
  • 9.9 Shell Heat Loss Calculations
  • 9.10 Calcination Module Calculation
  • 9.11 Combustion
  • 9.12 Energy Balance Module
  • 9.13 Sensible Energy for Output Streams
  • References
  • 10 - Rotary Kiln Minerals Process Applications
  • 10.1 Lime Making
  • 10.2 Limestone Dissociation (Calcination)
  • 10.3 The Rotary Lime Kiln
  • 10.4 The Cement-Making Process
  • 10.5 The Cement Process Chemistry
  • 10.5.1 Decomposition Zone
  • 10.5.2 Transition Zone
  • 10.5.3 Sintering Zone
  • 10.6 Rotary Cement Kiln Energy Usage
  • 10.7 Mineral Ore Reduction Processes in Rotary Kilns
  • 10.7.1 The Rotary Kiln SL/RN Process
  • 10.7.2 Roasting of Titaniferous Materials
  • 10.8 The Rotary Kiln Lightweight Aggregate-Making Process
  • 10.8.1 Lightweight Aggregate Raw Material Characterization
  • 10.8.2 Lightweight Aggregate Feedstock Mineralogy
  • 10.8.3 Lightweight Aggregate Thermal History
  • 10.9 The Rotary Kiln Pyrolysis/Carbonization
  • 10.9.1 Pyrolysis
  • 10.9.2 Slow Pyrolysis Products
  • 10.9.3 Fast Pyrolysis Products
  • 10.9.4 The Rotary Kiln Pyrolysis for Carbonization
  • 10.9.4.1 Temperature Control and Monitoring
  • 10.9.4.2 Material Flow and Particle Residence Time Distribution
  • 10.9.4.3 Energy Consumption
  • 10.9.4.4 Effect of Pyrolysis Unit on Metal Content in Biochar
  • 10.9.4.5 Effect of Pyrolysis Unit Setup on Organic Contaminants in Biochar
  • References
  • 11 - Rotary Kiln Petroleum Coke Calcination Process: Some Design Considerations
  • 11.1 Introduction
  • 11.2 The Rotary Calcining Integrated System
  • 11.3 Direct-Fired Kiln Characteristics
  • 11.4 Mass Balance
  • 11.5 Thermal Balance and Energy Use
  • 11.6 Volatile Matter
  • 11.7 Dust Output and Pickup
  • 11.8 Fixed Carbon Recovery and Burnout
  • 11.9 Kinetics and Product Quality
  • 11.10 Direct-Fired Pet-Coke Kiln Temperature Profiles
  • 11.11 Design Structure
  • 11.11.1 Mass Balance Scheme
  • 11.11.2 Comments
  • 11.12 Computational Fluid Dynamic Modeling (Pyroscrubber)
  • References
  • 12 - Rotary Kiln Environmental Applications
  • 12.1 Basic Regulatory Framework for Waste Burning Kilns
  • 12.1.1 Destruction and Removal Efficiency
  • 12.1.2 Flame Turbulence and DRE
  • 12.2 Hazardous Waste Incineration
  • 12.2.1 Risk Assessment
  • 12.3 Dual Use-Combustion Systems
  • 12.3.1 Municipal Solid Waste and Power Generation
  • 12.3.1.1 Rotary Kiln Dual Use
  • 12.4 Carbon Emissions, Reduction, and Capture
  • 12.4.1 Oxycombustion Cement Plant
  • 12.4.2 Cement Plant CO2 Limitations in the United States
  • References
  • Appendix
  • Nomenclature
  • Greek
  • Subscript
  • SI to British Conversion Factors
  • General Information
  • Composition of Air
  • The Stefan-Boltzmann constant
  • Mass
  • Velocity
  • Temperature
  • Heat Content
  • Pressure
  • Technical Atmosphere
  • Normal Atmosphere
  • Thermodynamic Tables-Gases
  • H, U, S, G for Some Gases and Vapors
  • Thermodynamic Tables-Inorganic Materials
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

136,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok