Lightweight Ballistic Composites

Military and Law-Enforcement Applications
 
 
Woodhead Publishing
  • 2. Auflage
  • |
  • erschienen am 19. April 2016
  • |
  • 482 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100425-8 (ISBN)
 

Lightweight Ballistic Composites: Military and Law-Enforcement Applications, Second Edition, is a fully revised and updated version of this informative book that explores the many changes in composite materials technology that have occurred since the book's first release in 2008, especially the type of commercial products used by armed forces around the world.

Some changes can be attributed to the wars in Iraq and Afghanistan, whereas others are due to massive investment by private companies to neutralize the ever-increasing global threats and fulfill the military's appetite for lighter materials. Soldiers are now better protected against new ballistic threats and the overall weight of body protection has been reduced, while comfort has increased.

New military vehicles are no longer purely armored with steel, and are instead lined with lightweight ballistic materials that increase the distance military vehicles can travel without refueling and also improve maneuverability. The book considers all aspects of lightweight ballistic composites from fiber manufacturing to commercial products and testing.

Chapters also cover the many uses of lightweight ballistic composites in the military and law-enforcement industries. It will be an invaluable reference for ballistic composite design engineers, product development engineers, and all those involved in promoting new products for both defense and the law-enforcement industry.


  • Gives comprehensive coverage on all aspects of lightweight ballistic composites, from fiber manufacturing, to commercial products and testing
  • Discusses the wider applications of lightweight ballistic composites in military and law-enforcement industries
  • Edited by a highly respected industry expert with over thirty years' experience developing lightweight composite ballistic materials and products
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 13,31 MB
978-0-08-100425-8 (9780081004258)
0081004257 (0081004257)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Lightweight Ballistic Composites
  • Related titles
  • Lightweight Ballistic Composites
  • Copyright
  • Dedication
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Composites Science and Engineering
  • Preface
  • 1 - High-performance ballistic fibers and tapes
  • 1.1 Introduction to high-performance fibers and tapes
  • 1.1.1 Requirements for high-performance fibers and tapes
  • 1.1.2 Manufacturing of high-performance fibers
  • 1.2 High-performance ballistic fibers and tapes
  • 1.2.1 UHMWPE fibers
  • 1.2.2 Aramid fibers
  • 1.2.3 UHMWPE tapes/ribbons
  • 1.2.4 Ballistic fiberglass
  • 1.2.5 Carbon fibers
  • 1.2.6 Other fibers
  • 1.2.6.1 High-modulus polypropylene fibers
  • 1.2.6.2 Ceramic fibers for ballistics
  • 1.3 UHMWPE fibers (Prevorsek, 1996)
  • 1.3.1 Chemical structure and morphology of UHMWPE fibers
  • 1.3.2 Gel-spinning process
  • 1.3.3 Morphology of UHMWPE fibers
  • 1.3.4 Physical properties of UHMWPE fibers
  • 1.3.5 Ballistic application of UHMWPE fibers
  • 1.4 Aramid fibers
  • 1.4.1 Dry-jet wet aramid fiber spinning
  • 1.4.2 Aramid fiber structure and morphology
  • 1.4.3 Skin core fibril structure
  • 1.4.4 Fiber fibrillar structure
  • 1.4.5 Pleat structure
  • 1.4.6 Crystalline structure
  • 1.4.7 Ballistic application of aramid fibers
  • 1.5 UHMWPE tape/ribbon
  • 1.5.1 UHMWPE polymer for tape/ribbon
  • 1.5.2 Extrusion and pressing process
  • 1.5.3 Drawing of the slit tape/ribbon
  • 1.5.4 High-tenacity and high-modulus fibrous tape/ribbon
  • 1.5.5 Morphology of UHMWPE tape/ribbon
  • 1.5.6 Differential scanning calorimetry characteristics of nonfibrous tape vs fibrous tape
  • 1.5.7 Ballistic application of UHMWPE tape/ribbon
  • 1.6 Ballistic fiberglass
  • 1.6.1 Raw materials
  • 1.6.2 Glass melting and refining
  • 1.6.3 Textile glass fiber spinning
  • 1.6.4 Fiberglass structure and morphology
  • 1.6.5 Applications of fiberglass
  • 1.7 High-modulus polypropylene fiber (Elizabeth Cates, 2015)
  • 1.7.1 Manufacturing process
  • 1.7.2 Structure of fiber
  • 1.7.3 Properties
  • 1.7.3.1 Tensile properties
  • 1.7.3.2 Thermal properties
  • 1.7.3.3 Chemical and moisture properties
  • 1.7.3.4 Comments about use in ballistics
  • 1.8 Recycling of ballistic fibers and converted products
  • 1.8.1 UHMWPE fibers and tapes
  • 1.8.1.1 Waste from woven and uncoated fabric
  • 1.8.1.2 Waste from coated fabric and crossply unidirectional materials
  • 1.8.2 Aramid fibers
  • 1.8.2.1 Waste from weaving and uncoated fabric
  • 1.8.2.2 Waste from coated fabric and crossply UD materials
  • 1.8.3 Glass fibers
  • 1.8.3.1 Waste from weaving and uncoated fabric
  • 1.8.3.2 Waste from coated fabric and crossply UD materials
  • Acknowledgment
  • References
  • Additional information
  • 2 - High performance fabrics and 3D materials
  • 2.1 Introduction
  • 2.2 Fiber types
  • 2.3 Composite fiber architectures
  • 2.3.1 Reinforcement structure
  • 2.3.2 Ply orientation
  • 2.3.3 Hybrids
  • 2.3.4 Through-thickness reinforcement
  • 2.3.5 Manipulation of through-thickness
  • 2.3.6 Particulate reinforcement
  • 2.3.7 Three-dimensional reinforcements
  • 2.4 Failure mechanisms
  • 2.5 Conclusions
  • Useful sources of further information
  • References
  • 3 - Nonwoven and crossplied ballistic materials
  • 3.1 Introduction
  • 3.1.1 Modern armor
  • 3.1.2 Scientific basis of armor construction
  • 3.1.3 Requirements of military armor
  • 3.1.4 Law enforcement armor needs
  • 3.2 Protective materials, devices, and end-use requirements
  • 3.2.1 Conventional approaches
  • 3.2.1.1 Conventional technologies
  • 3.2.1.2 Fiber components
  • 3.2.2 Unconventional nonwovens approaches
  • 3.3 Fiber selection criteria for ballistic-resistant materials
  • 3.3.1 Aramid types
  • 3.3.2 Linear polyethylene types
  • 3.3.3 PIPD fiber
  • 3.3.4 Potential fiber candidates for future use
  • 3.4 Variations of fiber forms
  • 3.4.1 Methods of creating nonwovens
  • 3.4.2 Filament
  • 3.4.2.1 Parallel filament layup with resin reinforcement
  • 3.4.2.2 Stitchbonding
  • 3.4.3 Staple fiber
  • 3.4.3.1 Opening and blending
  • 3.4.3.2 Mat formation methods
  • 3.4.3.3 Crosslapping (crossplying)
  • 3.4.3.4 Needlepunching
  • 3.5 Filament layup composites
  • 3.5.1 Flexible ("soft") armor uses of filament composites
  • 3.5.2 Level III filament layup armors
  • 3.6 Historical uses of nonwoven ballistic-resistant fabrics
  • 3.6.1 Test results from US Army Natick Labs
  • 3.6.2 Results from British researchers
  • 3.6.3 Test results and developments from independent and commercial entities
  • 3.7 Methodologies for use of nonwoven ballistic-resistant fabrics
  • 3.7.1 Single-fiber components
  • 3.7.2 Multiple layering of various single fibers
  • 3.7.3 Blended-fiber constructions
  • 3.7.4 Fragment protection
  • 3.7.5 Tests by US Army
  • 3.7.6 Combinations of nonwovens and conventional materials
  • 3.8 Future directions for nonwoven fabric applications
  • References
  • 4 - Ballistic threats: bullets and fragments
  • 4.1 What is the threat?
  • 4.2 Small arms ammunition
  • 4.2.1 Components of ammunition
  • 4.2.1.1 Bullet
  • 4.2.1.2 Cartridge case
  • 4.2.1.3 Propellant and primer
  • 4.2.2 Types of bullet
  • 4.2.2.1 Full metal jacket
  • 4.2.2.2 Hollow point
  • 4.2.2.3 Soft point
  • 4.2.2.4 Open tip match
  • 4.2.2.5 Plastic tip
  • 4.2.2.6 Armor piercing
  • 4.2.2.7 Tracer
  • 4.2.2.8 Amour-piercing incendiary
  • 4.2.2.9 Frangible
  • 4.2.2.10 Wad cutter
  • 4.2.2.11 Shotgun ammunition
  • 4.2.2.12 Other types of bullet natures
  • Flechettes
  • Saboted light armor penetrator
  • 4.2.3 Testing with bullets
  • 4.3 Fragments
  • 4.3.1 Types of fragments
  • 4.3.1.1 Primary fragments
  • 4.3.1.2 Secondary fragments
  • 4.3.2 Types of devices
  • 4.3.2.1 Fragmenting munitions
  • 4.3.2.2 Buried mines and improvised explosive devices
  • 4.3.3 Testing with fragments
  • 4.3.3.1 Variability of fragments
  • 4.3.3.2 Fragment-simulating projectiles
  • 4.4 Projectile and target interaction
  • 4.4.1 Factors affecting projectile penetration
  • 4.4.2 Projectile deformation
  • 4.4.2.1 Bullet jacket stripping
  • 4.4.2.2 Bullet mushrooming
  • 4.4.2.3 Bullet bending
  • 4.4.2.4 Projectile fracture
  • 4.4.2.5 Core erosion
  • 4.5 Summary
  • Acknowledgments
  • References
  • 5 - International ballistic and blast specifications and standards
  • 5.1 Introduction
  • 5.2 Why are there armor test methods and/or standards?
  • 5.3 General definitions used in test methods and standards
  • 5.4 Threat regimes for personal armor test methods and standards
  • 5.4.1 Low-velocity bullets
  • 5.4.2 High-velocity bullets
  • 5.4.3 Fragmentation
  • 5.4.4 Blast
  • 5.5 Threat regimes for vehicle armor test methods and standards
  • 5.5.1 Fragmentation
  • 5.5.2 Small arms
  • 5.5.3 Medium-caliber ammunition
  • 5.5.4 Blast
  • 5.6 Personal armor user communities
  • 5.6.1 Law enforcement
  • 5.6.2 Military
  • 5.6.3 General
  • 5.7 Personal armor law enforcement test methods and standards
  • 5.7.1 Home Office Scientific Development Branch Publication No. 39/07 2007 (Croft and Longhurst, 2007)
  • 5.7.2 HO CAST 2015
  • 5.7.3 NIJ Standard-0101.04 (2001)
  • 5.7.4 NIJ Standard-0101.06 (2008)
  • 5.7.5 NIJ Standard-0106.01 (1981)
  • 5.7.6 HO CAST 47/11 (Tichler, 2011)
  • 5.8 Personal armor military test methods and standards
  • 5.8.1 Standardization Agreement 2920 edition 2 (STANAG 2920 Ed 2, 2003)
  • 5.8.2 STANAG 2920 edition 3 and Allied Engineering Publication 2920
  • 5.8.3 Military Standard 662F (MIL-STD-662F, 1997)
  • 5.9 Personal armor general purpose test methods and standards
  • 5.9.1 NIJ Standard-0117.00 (2012)
  • 5.10 Vehicle armor user communities
  • 5.10.1 Civilian
  • 5.10.2 Military
  • 5.11 Vehicle armor civilian test methods and standards
  • 5.11.1 Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen BRV 2009 (VPAM BRV 2009, 2014)
  • 5.11.2 VPAM ERV 2010 (2011)
  • 5.11.3 Publicly Available Specification 300 (PAS 300:2015, 2015)
  • 5.12 Vehicle armor military test methods and standards
  • 5.12.1 STANAG 4569 edition 2 (2012)
  • 5.12.2 AEP-55 volume 1-3 (2014)
  • 5.13 General ballistic material test methods and standards
  • 5.13.1 NIJ-0108.01 Standard (1985)
  • 5.13.2 VPAM APR 2006 (2009)
  • 5.13.3 VPAM PM 2007 (2014)
  • 5.14 Approach to use when there are no suitable standards or methods
  • 5.14.1 Use of a test method designed for a different purpose
  • 5.14.2 Amendments made by user communities
  • 5.14.3 Bespoke test specifications
  • 5.14.4 Do not conduct any testing
  • 5.15 Issues with contents of some standards
  • 5.15.1 Reality versus repeatability
  • 5.15.2 Obsolete threat levels
  • 5.16 The possible future of armor test methods and standards
  • 5.16.1 Continued use of irrelevant standards
  • 5.16.2 Bullet surrogates
  • 5.17 Summary
  • Glossary
  • References
  • 5. Annex 5-A: Definitions
  • 6 - Lightweight composite materials processing
  • 6.1 Introduction
  • 6.2 Ballistic fibers
  • 6.2.1 Ballistic fabrics
  • 6.2.1.1 Woven fabrics
  • Uncoated fabrics
  • Coated fabrics or prepregs
  • Thermoset-coated fabrics (film and resin coated)
  • Thermoplastic-coated fabrics (film and resin coated)
  • 6.2.1.2 Ballistic crossplied unidirectional materials
  • 6.2.1.3 Ultrahigh-molecular-weight polyethylene tapes
  • 6.2.1.4 Ballistic felts
  • 6.3 Quality control of ballistic materials
  • 6.3.1 Why quality control is essential for manufacturing a quality product
  • 6.3.2 Physical properties
  • 6.3.3 Instrumental and spectroscopy methods
  • 6.3.4 Ballistic testing of materials
  • 6.3.4.1 Ballistic resistance methodologies
  • 6.3.4.2 Ballistic limit (V50) testing
  • 6.3.4.3 Probit method
  • 6.3.4.4 Langlie method
  • 6.3.4.5 One-shot test response method
  • 6.3.4.6 Bruceton method
  • 6.4 Various international ballistic specifications/standards
  • 6.4.1 MIL-STD-662F and Standardization Agreement (STANAG) 2920
  • 6.4.2 National Institute of Justice Standard-0101.04 for law enforcement vests/hard armor plates
  • 6.4.3 NIJ Standard-0108.01
  • 6.4.4 NIJ-0101.06 Standard for armor vests and hard armor plate
  • 6.4.5 NIJ Standard-0106.01 for ballistic helmets
  • 6.5 Processing of ballistic materials
  • 6.5.1 Raw materials
  • 6.5.1.1 Ceramic-based raw materials
  • Aluminum oxide
  • Silicon carbide
  • Boron carbide
  • 6.5.1.2 Antiballistic fabrics
  • Aramid fabric
  • Ultrahigh-molecular-weight polyethylene
  • Glass fiber
  • Carbon fiber
  • 6.5.1.3 Resins
  • Thermoset resins
  • Epoxy resins
  • Polyesters
  • Phenolics
  • Vinylester resins
  • Thermoplastics
  • Polyvinyl butyral resin
  • Nylons
  • Polypropylene
  • Polyether ether ketone
  • 6.5.2 Processing methods and equipment
  • 6.5.2.1 Hand-layup method
  • Background
  • Definition
  • Procedure
  • Wet-layup advantages
  • Wet-layup disadvantages
  • 6.5.2.2 Vacuum bagging
  • Description
  • 6.5.2.3 Vacuum and oven processing
  • 6.5.2.4 Compression molding
  • Process
  • 6.5.2.5 Autoclave processing
  • Safety systems
  • Heat and pressure control
  • Computerized process control, monitoring, and data logging
  • 6.5.3 Molds for processing ballistic composites
  • 6.5.3.1 Low-volume molds
  • 6.5.3.2 High-volume high-pressure molds
  • 6.5.3.3 High-volume low-pressure permanent mold
  • 6.5.3.4 Others
  • Reference link
  • 6.5.4 Processing of panels: small and large
  • 6.5.4.1 Processing of monolithic breastplates
  • 6.5.4.2 Processing of ceramic-faced breastplates
  • 6.5.5 Processing panels for level IV
  • 6.5.6 Processing of a helmet shell or other curved component
  • 6.5.7 Trimming and finishing of the products
  • 6.6 Evaluation of molded articles
  • 6.7 Transportation and storage of ballistic material
  • 6.7.1 Thermoset prepregs
  • 6.7.2 Thermoplastic prepregs
  • 6.7.2.1 Storage in a warehouse
  • 6.7.2.2 Ground transport
  • 6.7.2.3 Sea transportation
  • 6.7.2.4 Air transport
  • 6.7.2.5 Storage at molding facilities in hot, humid, and cold weather
  • 6.8 Durability of the products in field
  • 6.9 Recycling and disposal of prepregs
  • 6.10 Ballistic helmets
  • 6.10.1 American helmet
  • 6.10.2 United Kingdom helmet
  • 6.10.3 French helmet
  • 6.10.4 Australian helmet
  • 6.10.5 Russian helmet
  • 6.11 Handheld riot shields
  • Bibliography
  • 7 - Personal armor
  • 7.1 Introduction
  • 7.2 Body armor
  • 7.3 Helmets
  • 7.4 Face and eye protection
  • 7.5 Neck protection
  • 7.6 Pelvic protection
  • 7.7 UK Virtus body armor system
  • 7.7.1 Virtus torso subsystem
  • 7.7.2 Virtus head subsystem
  • 7.8 Future developments
  • Useful sources of further information
  • Journals
  • Conferences
  • References
  • 8 - Durability of high-performance ballistic composites
  • 8.1 Introduction
  • 8.2 Ballistic materials
  • 8.2.1 Ballistic fibers
  • 8.2.1.1 Polybenzobisoxazole fibers
  • 8.2.1.2 Aramid fibers
  • 8.2.1.3 M5®
  • 8.2.1.4 Ultrahigh-molecular-weight polyethylene fibers
  • 8.2.2 Ballistic fabrics
  • 8.2.2.1 Woven fabrics
  • 8.2.2.2 Coated unidirectional and woven fabrics
  • Thermoset-coated fabrics
  • Thermoplastic-coated fabrics
  • 8.2.3 Ballistic unidirectional crossplied materials
  • 8.2.3.1 Aramid fiber-based materials
  • 8.2.3.2 UHMWPE fiber-based materials
  • 8.3 Durability of ballistic fibers and materials-test protocols
  • 8.3.1 UV sensitivity
  • 8.3.2 Effects of moisture and heat
  • 8.3.2.1 Pretest parameters
  • 8.3.2.2 Test conditions
  • 8.3.3 Exposure to industrial chemicals
  • 8.3.4 Durability of bonding resins
  • 8.3.5 Durability of laminated film on ballistic materials
  • 8.4 Tests for assessing durability of converted products-test protocols
  • 8.4.1 Physical properties
  • 8.4.1.1 Tensile strength
  • 8.4.1.2 Tearing strength
  • 8.4.1.3 Bursting strength
  • 8.4.1.4 Abrasion resistance
  • 8.4.1.5 Yarn slippage and seam strength
  • 8.4.1.6 Flexural properties
  • 8.4.1.7 Interlaminar shear properties
  • 8.4.2 Chemical properties
  • 8.4.2.1 Humidity moisture absorption test
  • 8.4.2.2 Plasma emission spectrometry
  • 8.4.2.3 Solid-state nuclear magnetic resonance
  • 8.4.2.4 Boiling fiber test
  • 8.4.3 Ballistic testing of materials
  • 8.4.4 Protocol for ballistic limit tests
  • 8.5 Role of specification on durability
  • 8.5.1 Specification focus on short-term durability
  • 8.5.2 Nonballistic tests
  • 8.5.2.1 Visual inspection
  • 8.5.2.2 Automated tap test
  • 8.5.2.3 Ultrasonic inspection
  • Through-transmission ultrasonic inspection
  • Pulse-echo ultrasonic inspection
  • Ultrasonic bond tester inspection
  • Phased-array inspection
  • 8.5.2.4 Radiography
  • 8.5.2.5 Thermography
  • 8.5.2.6 Neutron radiography
  • 8.5.2.7 Moisture detection
  • 8.6 Effects of processing on durability
  • 8.6.1 Raw materials
  • 8.6.1.1 High-performance fibers
  • 8.6.1.2 Matrix
  • 8.6.1.3 Ceramic inserts
  • 8.6.2 Processing method and its role
  • 8.6.3 Processing equipment
  • 8.6.3.1 Vacuum and oven processing
  • 8.6.3.2 Autoclave processing
  • 8.6.3.3 High-pressure match-die molding
  • 8.6.3.4 Mold design attributes
  • Mold heating
  • Proper venting
  • Use of individual cavities and cores
  • Proper design and location of the ejector pins
  • Polishing and plating of the mold
  • 8.6.4 Processing panels: small and large
  • 8.6.4.1 Breastplates
  • 8.6.4.2 Single panel molding
  • 8.6.5 Durability of level III single-panel versus level IV breastplates
  • 8.6.5.1 Composition of ceramics
  • Alumina
  • Silicon carbide/silicon nitride
  • Boron carbide
  • 8.6.5.2 Durability of adhesives
  • 8.6.5.3 Role of crack arrester to increase durability of level IV plates
  • 8.6.5.4 Role of wrapping to constrain ceramics for short-term and long-term durability
  • 8.6.5.5 X-ray of ceramic bonding with backing for checking durability
  • 8.7 Other ballistic products
  • 8.7.1 Durability of curved components and helmet shells
  • 8.7.2 Helmet specifications
  • 8.8 Effects of secondary manufacturing processes: machining, trimming, and finishing
  • 8.8.1 Advantages and disadvantages of traditional versus nontraditional machining
  • 8.8.2 Water jet versus laser trimming
  • 8.8.3 Role of coatings in preventing effects of moisture, ultraviolet light, and industrial chemicals
  • 8.9 Perception of ballistic threats on durability
  • 8.9.1 Handgun threats
  • 8.9.2 Rifle bullets
  • 8.9.3 Fragments
  • 8.9.4 Improvised explosive devices
  • 8.10 Effects of transportation and storage of ballistic materials on durability
  • 8.10.1 Long-distance shipment and storage
  • 8.10.2 Ground transport
  • 8.10.3 Sea transport
  • 8.10.4 Air transport
  • References
  • 9 - Vehicle armor
  • 9.1 Introduction
  • 9.2 Vehicle armor
  • 9.2.1 Boats
  • 9.2.2 Rotary- and fixed-wing craft
  • 9.2.3 Ground vehicles
  • 9.3 Ballistic materials
  • 9.3.1 Metal armor
  • 9.3.2 Ceramics
  • 9.3.3 Composite materials
  • 9.3.3.1 Ballistic fibers and tapes
  • Glass fiber
  • Aramid fiber
  • Ultrahigh-molecular-weight polyethylene fiber
  • Ultrahigh-molecular-weight polyethylene tapes
  • 9.3.3.2 Resins and prepregs
  • Thermoset resins
  • Thermoplastic resins
  • 9.4 Processing composite armor panels
  • 9.4.1 Glass and aramid thermosets
  • 9.4.2 Ultrahigh-molecular-weight polyethylene fiber-based thermoplastics
  • 9.4.3 Postpressing composite armor
  • 9.5 Threats and ballistic test standards
  • 9.5.1 National Institute of Justice 0108.01
  • 9.5.2 British Standard EN 1063
  • 9.5.3 Underwriters Laboratory UL 752
  • 9.5.4 NATO Allied Engineering Publication 55 Standardization Agreement 4569
  • 9.5.5 VPAM and PAS: fully equipped testing of civilian vehicles
  • 9.6 Armor design process
  • 9.7 Summary
  • References
  • 10 - Testing of armor systems
  • 10.1 Types of armor
  • 10.2 Types of tests
  • 10.3 Velocity measurements
  • 10.4 Penetration testing
  • 10.5 Helmet system performance evaluations
  • 10.6 Environmental and usage considerations
  • 10.6.1 Environmental exposure
  • 10.6.1.1 Temperature
  • 10.6.1.2 Humidity
  • 10.6.1.3 Weathering
  • 10.6.1.4 Vibration
  • 10.6.1.5 Altitude
  • 10.6.1.6 Flexing
  • 10.6.1.7 Maritime (flotation/submersion)
  • 10.6.2 Carriers
  • 10.6.2.1 Antimicrobial
  • 10.6.2.2 Abrasion
  • 10.6.2.3 Machine washability
  • 10.6.2.4 Fading and colorfastness
  • 10.6.2.5 Closure wearout
  • 10.7 Soft armor panels
  • 10.7.1 Areal density-body armor
  • 10.7.2 Flexibility
  • Bibliography
  • 11 - Numerical analysis of ballistic composite materials
  • 11.1 Introduction
  • 11.2 Major ballistic materials
  • 11.2.1 Aramid
  • 11.2.2 Fiberglass
  • 11.2.3 Ultrahigh-molecular-weight polyethylenes
  • 11.3 Finite element analysis as a design tool
  • 11.3.1 Experimental characterization of materials
  • 11.3.1.1 Simple tension and loading/unloading tests
  • 11.3.1.2 Simple compression and loading/unloading tests
  • 11.3.1.3 Double cantilever beam mode-I test
  • 11.3.2 Constitutive modeling
  • 11.3.2.1 Strain-rate effects
  • 11.3.2.2 Failure modeling
  • 11.4 Finite element modeling of ballistic packages
  • 11.4.1 Verification tests
  • 11.4.2 Analysis, design, and manufacture of body armor
  • 11.5 Concluding remarks
  • References
  • 12 - Design, manufacture, and analysis of ceramic-composite armor
  • 12.1 Introduction
  • 12.2 Ceramics as an armor material
  • 12.3 Manufacture of ceramics
  • 12.4 Finite element analysis of a ceramics-based ballistic package
  • 12.4.1 Material models
  • 12.4.2 Model calibration
  • 12.4.3 An example
  • 12.5 Concluding remarks
  • References
  • 13 - Ceramic-faced molded armor
  • 13.1 Introduction to ceramic-faced lightweight armor
  • 13.2 Types of ceramics
  • 13.2.1 Aluminum oxide
  • 13.2.2 Silicon carbide or nitride
  • 13.2.3 Boron carbide
  • 13.3 Shapes of ceramics
  • 13.3.1 Flat tiles
  • 13.3.1.1 Thin and thick tiles
  • 13.3.1.2 Small, large, and monolithic tiles
  • 13.3.2 Shaped ceramics
  • 13.3.2.1 Spherical elements
  • 13.3.2.2 Cylinders
  • 13.3.2.3 Multicurvature
  • 13.4 Composite backings
  • 13.4.1 Fiberglass
  • 13.4.2 Woven aramid fabrics
  • 13.4.3 UHMWPE woven fabric
  • 13.4.4 UHMWPE unidirectional fabric
  • 13.4.5 Aramid unidirectional fabric
  • 13.5 Fabrication of ceramic-faced armor
  • 13.5.1 Personal protection
  • 13.5.1.1 Ceramic-faced hard molded armor backing
  • 13.5.1.2 Ceramic-faced flexible armor backing
  • 13.5.2 Vehicle armor
  • 13.5.2.1 Ground vehicle
  • 13.5.2.2 Airplanes and helicopters
  • 13.5.2.3 Boat and ship armor
  • 13.6 Testing of ceramic-faced armor
  • 13.6.1 Ammunition
  • 13.6.2 Testing standards and methods
  • 13.6.2.1 Personnel protection
  • 13.6.2.2 Ground vehicle and aircraft protection
  • References
  • 14 - Materials, manufacturing, and enablers for future soldier protection
  • 14.1 Introduction
  • 14.2 New directions in head protection
  • 14.2.1 A comprehensive material/process/property approach for improving head protection
  • 14.2.2 New insight into the influence of laminate architecture on ballistic performance
  • 14.2.3 Insight enabled by modeling of helmet materials and laminates
  • 14.2.4 Manufacturing processes as enablers for improved protection
  • 14.2.5 Moving beyond composite sheet goods
  • 14.2.6 The influence of manufacturing on preform fabrication
  • 14.3 New material developments in torso and related body armor
  • 14.3.1 The influence of informed design in soft body armor systems
  • 14.3.2 The potential benefits of spider silk in soft armor applications
  • 14.3.3 Novel approaches to hard armor materials
  • 14.3.4 Novel processes and inspection technologies for ceramic/composite-plate body armor
  • 14.3.5 Moving beyond discrete materials for soldier protection: "materials multifunctionality by design"
  • 14.4 Novel exoskeleton development
  • 14.4.1 Motivation for localized passive exoskeleton concepts
  • 14.4.2 The development of Vertical Load Offset System prototypes
  • 14.4.3 The evolved Vertical Load Offset System prototype
  • 14.4.4 The potential of torso-based load sharing for improved head protection
  • 14.5 The disruptive potential of robotically deployed materials to enhance soldier protection
  • 14.5.1 The Robotic Augmented Soldier Protection concept
  • 14.5.2 Dual-use potential: optionally manned platforms for material transport and protection
  • 14.5.3 Developing the rationale and scenarios for robotically deployed soldier protection
  • 14.6 Summary
  • Acknowledgments
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

243,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok