Differential Equations

A Concise Course

Dover Publications (Verlag)
• erschienen am 30. Oktober 2013
• |
• 224 Seiten

 E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-486-14364-4 (ISBN)

This concise treatment of differential equations is intended to serve as a text for a standard one-semester or two-term undergraduate course in differential equations following the calculus. Emphasis is placed on mathematical explanations — ranging from routine calculations to moderately sophisticated theorems — in order to impart more than a rote understanding of techniques. Beginning with a survey of first order equations, the text goes on to consider linear equations — including discussions of complex-valued solutions, linear differential operators, inverse operators, and variation of parameters method. Subsequent chapters then examine the Laplace transform and Picard's existence theorem and conclude with an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions make this a first-rate introduction to differential equations.

 Reihe: Sprache: Englisch Verlagsort: New York | USA Verlagsgruppe: Guilford Publications Maße: Höhe: 216 mm | Breite: 137 mm Dateigröße: 21,04 MB ISBN-13: 978-0-486-14364-4 (9780486143644) ISBN-10: 0486143643 (0486143643)
weitere Ausgaben werden ermittelt
H. S. Bear
• Cover
• Title Page
• Preface
• Contents
• Differential Equations
• Chapter 1: First Order Equations
• 1-1 Introduction
• 1-2 Variables separate
• 1-3 Geometric interpretation of first order equations
• 1-4 Existence and uniqueness theorem
• 1-5 Families of curves and envelopes
• 1-6 Clairaut equations
• Chapter 2: Special Methods For First Order Equations
• 2-1 Homogeneous equations-substitutions
• 2-2 Exact equations
• 2-3 Line integrals
• 2-4 First order linear equations-integrating factors
• 2-5 Orthogonal families
• 2-6 Review of power series
• 2-7 Series solutions
• Chapter 3: Linear Equations
• 3-1 Introduction
• 3-2 Two theorems on linear algebraic equations
• 3-3 General theory of linear equations
• 3-4 Second order equations with constant coefficients
• 3-5 Applications
• Chapter 4: Special Methods For Linear Equations
• 4-1 Complex-valued solutions
• 4-2 Linear differential operators
• 4-3 Homogeneous equations with constant coefficients
• 4-4 Method of undetermined coefficients
• 4-5 Inverse operators
• 4-6 Variation of parameters method
• Chapter 5: The Laplace Transform
• 5-1 Review of improper integrals
• 5-2 The Laplace transform
• 5-3 Properties of the transform
• 5-4 Solution of equations by transforms
• Chapter 6: Picard's Existence Theorem
• 6-1 Review
• 6-2 Outline of the Picard method
• 6-3 Proof of existence and uniqueness
• 6-4 Approximations to solutions
• Chapter 7: Systems Of Equations
• 7-1 Geometric interpretation of a system
• 7-2 Other interpretations of a system
• 7-3 A system equivalent to M(x, y) dx + N(x, y) dy = 0
• 7-4 Existence and uniqueness theorems
• 7-5 Existence theorem for nth order equations
• 7-6 Polygonal approximations for systems
• 7-7 Linear systems
• 7-8 Operator methods
• 7-9 Laplace transform methods
• Index
Schweitzer Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BISAC Classifikation

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.