Catalysis, Green Chemistry and Sustainable Energy

New Technologies for Novel Business Opportunities
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 22. November 2019
  • |
  • 576 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-64338-4 (ISBN)
 

Catalysis, Green Chemistry and Sustainable Energy: New Technologies for Novel Business Opportunities offers new possibilities for businesses who want to address the current global transition period to adopt low carbon and sustainable energy production. This comprehensive source provides an integrated view of new possibilities within catalysis and green chemistry in an economic context, showing how these potential new technologies may become useful to business. Fundamentals and specific examples are included to guide the transformation of idea to innovation and business.

Offering an overview of the new possibilities for creating business in catalysis, energy and green chemistry, this book is a beneficial tool for students, researchers and academics in chemical and biochemical engineering.

  • Discusses new developments in catalysis, energy and green chemistry from the perspective of converting ideas to innovation and business
  • Presents case histories, preparation of business plans, patent protection and IP rights, creation of start-ups, research funds and successful written proposals
  • Offers an interdisciplinary approach combining science and business
  • Englisch
  • San Diego
  • |
  • Niederlande
  • 20,00 MB
978-0-444-64338-4 (9780444643384)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Catalysis, Green Chemistry and Sustainable Energy
  • CATALYSIS, GREEN CHEMISTRY AND SUSTAINABLE ENERGY: NEW TECHNOLOGIES FOR NOVEL BUSINESS OPPORTUNITIES
  • Copyright
  • Contents
  • Contributors
  • I - Introduction
  • Introduction to the book
  • 1 - The vision of future sustainable energy, catalyst, and chemistry: opportunities for innovation and business
  • 1. Introduction
  • 2. Sustainability as a driver for company strategies
  • 3. Opportunities for innovation and business
  • 3.1 The business opportunities
  • 4. Circular economy
  • 4.1 Industrial symbiosis and change of business model
  • 5. Sustainability and circularity indexes
  • 6. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • Further reading
  • 2 - How green chemistry will change chemical engineering
  • 1. Introduction
  • 1.1 What makes a chemical process green or greener?
  • 2. Renewable and waste materials as new feedstocks
  • 2.1 Principal solid wastes
  • 2.2 Plastic wastes
  • 2.3 Biomass
  • 2.4 Natural-based fatty acids
  • 3. Low-energy-intensity processes
  • 3.1 Fermentation processes
  • 3.1.1 Energy consumption in fermentation processes
  • 3.2 Development of membrane reactors
  • 3.3 Room-temperature ionic liquids
  • 4. Green chemistry and catalysis (principle No. 9)
  • 4.1 Perovskites
  • 4.2 Nanocatalysts
  • 4.3 Enzyme biocatalysis
  • 5. The scale-up issue
  • 5.1 Fermentation scale-up
  • 5.2 Catalyst scale-up
  • 6. Conclusion and future trends
  • List of abbreviations and acronyms
  • List of Symbols
  • References
  • II - Opportunities for innovation & business
  • Preface to the section opportunities for innovation and business
  • 3 - Building the future of green chemistry
  • 1. Introduction
  • 1.1 What does "green chemistry" mean?
  • 1.2 Is there a definition of "circular economy?"
  • 1.3 What is the relationship between the green chemistry, green economy, and circular economy?
  • 1.4 What is the definition of "carbon footprint?"
  • 1.5 How can the possible green chemistry actions be classified?
  • 1.6 Recyclable, renewable, biodegradable, compostable: what is the difference?
  • 1.7 What is a biorefinery?
  • 2. Actual situation and future scenario
  • 3. Enforcement actions
  • 4. Bio-based chains
  • 5. Case-study: polyester (PET) chain
  • 5.1 The drop-in option
  • 6. Conclusions and future trends
  • List of abbreviations and acronyms
  • Further reading
  • 4 - So you want your supply chain to adopt sustainable and green practices: how complicated could that be?
  • 1. Introduction
  • 2. What do we mean by sustainable and green practices?
  • 3. An introduction to supply chains
  • 4. What is supply chain management?
  • 5. Challenges in adopting and applying green chemistry to a supply chain
  • 6. A typical apparel firm's supply chain
  • 7. What is strategy?
  • 8. What forces shape the ability of a firm to create comparative advantage?
  • 9. Coopetition
  • 10. Conclusion and future trends
  • List of abbreviations and acronyms
  • 5 - Biorefineries and green diesel: process and product innovation
  • 1. Introduction
  • 2. Regulatory aspects of biofuels
  • 3. Feedstocks for biofuels
  • 4. The Eni approach to biofuels
  • 5. Eni/UOP Ecofining technology
  • 6. High-quality green products
  • 7. Eni's Green Refinery project in Venice
  • 8. Eni Diesel +
  • 9. Advanced feedstocks for the biorefinery
  • 10. Conclusion and future trends
  • List of acronyms
  • References
  • 6 - Oleochemicals: all time players of green chemistry
  • 1. Introduction to oleochemicals industry
  • 2. Oleochemicals basic chemistry
  • 3. Oleochemical manufacturing methods
  • 3.1 Fatty acids manufacturing methods
  • 3.1.1 Fat splitting process
  • 3.1.2 Fatty acids distillation process
  • 3.1.3 Fatty acids fractionation process
  • 3.2 Methyl esters manufacturing methods
  • 3.2.1 Transesterification processes
  • 3.2.2 Esterification processes
  • 3.2.3 Fatty alcohol manufacturing methods
  • 3.3 Fatty alcohol manufacturing process
  • 3.3.1 Fatty alcohol manufacturing process routes
  • 4. Oil and fats, oleochemicals, and oleofuels market
  • 5. Conclusion and future trends
  • List of abbreviations and acronyms
  • References
  • 7 - Nanotechnology for green materials and processes
  • 1. Introduction
  • 2. Toward green nanotechnology
  • 2.1 Environmental remediation
  • 2.2 Environmental monitoring
  • 3. Renewable energy generation and storage applications
  • 3.1 Solar energy conversion
  • 3.2 Hydrogen production
  • 3.3 Storage applications
  • 4. Reduced consumption/substitution of raw materials
  • 5. Nanotechnologies for agriculture
  • 6. Green synthesis
  • 6.1 Green synthesis of NPs
  • 6.2 Photocatalytic synthesis of organic compounds
  • 7. Enzymatic catalysis
  • 8. Life cycle of nanomaterials: health and environmental risk
  • 9. The case of oil and gas industry
  • 9.1 Drilling
  • 9.2 Production and stimulation
  • 9.3 Refining and fuel production
  • 10. Conclusion and future trends
  • List of abbreviations and acronyms
  • References
  • III - Methodologies for green chemistry & engineering
  • Preface to the section methodologies for green chemistry and engineering
  • 8 - Process analysis and plant simulation in a sustainable economy
  • 1. Introduction
  • 2. Process modeling
  • 2.1 Mass and energy balances
  • 2.2 Thermodynamics
  • 3. Process analysis and simulation
  • 4. Energy footprint and exergetic analysis
  • 5. Conclusions and future trends
  • Nomenclature
  • List of abbreviations and acronyms
  • Symbols
  • Greek
  • Subscripts
  • References
  • 9 - Calculate the production costs of your own process
  • 1. Introduction
  • 2. Key elements of economic calculation
  • 2.1 Capital investment
  • 2.1.1 Methods for fixed investment estimation
  • 2.2.2 Cost indexes
  • 2.1.3 Location factor
  • 2.2 Total production costs
  • 2.3 Evaluation of the project and profitability study
  • 3. Economics of an innovative technology: the case study of hydrogen production via membrane reactors
  • 4. Conclusions and future trends
  • List of abbreviations and acronyms
  • List of symbols
  • References
  • 10 - Assessing green processes through life cycle assessment and other LCA-related methods
  • 1. Introduction
  • 2. The LCA method for the design and assessment of greener processes and products
  • 3. Other LCA-related methods
  • 4. Application of LCA in green chemistry and sustainable energy: a review
  • 4.1 LCA in green chemistry
  • 4.2 LCA in sustainable energy
  • 5. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • IV - Selected examples and case history
  • Preface to the section selected examples and case history
  • 11 - Waste feedstocks for sustainable chemicals and fuels
  • 1. Introduction
  • 2. Waste characterization and syngas production
  • 3. Syngas conversion
  • 3.1 Methanol production
  • 3.2 Methanol production with excess CO2
  • 3.3 Methanol production with external electrolytic H2
  • 3.4 Sensitivity analysis
  • 4. Bio-SNG
  • 4.1 Synthetic methane production from syngas
  • 4.2 Environmental analysis: CO2 emission
  • 5. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • 12 - PET depolymerization: a novel process for plastic waste chemical recycling
  • 1. Introduction to PET
  • 2. The PET value chain
  • 2.1 Chemical recycling
  • 2.2 Glycolysis
  • 2.3 Methanolysis
  • 2.4 Hydrolysis
  • 3. DEMETO: a new route for PET chemical depolymerization
  • 3.1 The DEMETO technology
  • 3.2 The DEMETO process description
  • 3.2.1 Reaction
  • 3.2.2 Purification section
  • 3.2.3 Contaminants removal
  • 4. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • Further reading
  • 13 - Production and processing of biodegradable and compostable biomaterials
  • 1. Introduction
  • 1.1 Biopolymers
  • 2. Polylactic acid
  • 2.1 Production
  • 2.2 PLA processing
  • 2.2.1 Extrusion
  • 2.2.2 Injection molding
  • 2.2.3 Injection stretch blow molding
  • 2.2.4 Cast film and sheet
  • 2.2.5 Thermoforming
  • 2.3 Tailoring PLA properties
  • 3. Polyesters
  • 4. PET fibers
  • 5. PET films
  • 6. PET for packaging
  • 6.1 Polybutylene succinate
  • 6.1.1 Blends of PBS and other biodegradable polymers
  • 7. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • 14 - Leveraging novel green solvents to drive conceptual and practical biorefinery innovation
  • 1. Introduction
  • 2. Classical biomass fractionation processes
  • 3. Novel green solvents
  • 4. Biorefinery processes using alternative solvents
  • 4.1 "Circular extraction" with switchable solvents
  • 4.2 Aqueous two-phase systems extraction
  • 4.3 Ionic liquid-based lignocellulosic biorefinery
  • 4.4 Natural deep eutectic solvent-based lignocellulosic biorefinery
  • 5. The market trap
  • 6. Conclusions and future trends
  • List of abbreviations and acronyms
  • Acknowledgments
  • References
  • 15 - Fermentation and biochemical engineering: principles and applications
  • 1. Introduction
  • 2. Enzymes
  • 2.1 Enzyme kinetics
  • 2.1.1 Michaelis-Menten kinetics
  • 2.1.2 Enzymatic activity inhibition
  • 2.1.2.1 Reversible inhibition modeling
  • 2.1.2.2 Other factors influencing enzyme activity
  • 2.1.2.3 Influence of pH
  • 2.1.2.4 Influence of temperature
  • 3. Cellular kinetics
  • 3.1 System description
  • 3.2 Growth medium model simplifications
  • 3.3 Cell model simplifications
  • 3.4 Cell life cycle
  • 3.5 Monod growth kinetics
  • 3.6 Substrate consumption
  • 3.7 Product formation
  • 3.8 Example of observed and "true" yield mass coefficients of organism growth/product formation and related models
  • 4. Ideal bioreactors
  • 5. Typical industrial fermentation setup
  • 5.1 Chemostat: focus on the washout condition and productivity
  • 5.2 Aerobic reactors: cellular respiration
  • 6. Bioethanol production
  • 6.1 Separate hydrolysis and fermentation
  • 6.2 Simultaneous saccharification and fermentation
  • 6.3 Example: general second-generation ethanol production case
  • 7. Conclusion and future trends
  • List of abbreviations and acronyms
  • List of symbols
  • Greek symbols
  • References
  • Further reading
  • 16 - New strategies enhancing feasibility of microalgal cultivations
  • 1. Introduction
  • 2. Development of biorefineries
  • 2.1 Definition of biorefinery
  • 2.2 Potential products obtainable by a microalgae biorefinery
  • 2.3 Shifting microalgae processes from single products to multiple products
  • 3. Innovative photobioreactors
  • 3.1 Thin-layer photobioreactors
  • 3.2 Biofilm photobioreactors
  • 3.3 Other innovative solutions to improve phototrophic cultivation
  • 4. Wastewaters utilization as a source of nutrients
  • 4.1 Wastewater as a source of nutrients for microalgae growth
  • 4.2 Wastewater treatment by microalgae
  • 4.3 Enhanced microalgae growth by exploiting organic substrates from wastewaters
  • 4.3.1 Microalgae growth on organic substrates
  • 4.3.2 Innovative strategies for organic substrate addition
  • 5. Strain improvement
  • 5.1 Improvement of photosynthetic efficiency
  • 5.2 Improvement in target compound accumulation
  • 5.3 Improvement in strain resistance to adverse conditions
  • 6. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • 17 - Ultracompact biofuels catalytic reforming processes for distributed renewable hydrogen production
  • 1. Introduction
  • 2. Distributed hydrogen production from bioethanol
  • 3. Hydrogen production by catalytic steam reforming of bio-oil
  • 4. Distributed hydrogen production from biogas
  • 5. Distributed hydrogen production from biodiesel
  • 6. Conclusion and future trends
  • List of abbreviations and acronyms
  • References
  • 18 - Fuel cells: opportunities and challenges
  • 1. Introduction
  • 2. Fundamentals
  • 2.1 Operating principles
  • 2.2 Classification
  • 2.3 Theoretical background
  • 3. Fuel cell types
  • 3.1 Polymer electrolyte membrane fuel cells
  • 3.2 Direct methanol fuel cells
  • 3.3 Phosphoric acid fuel cells
  • 3.4 Molten carbonate fuel cells
  • 3.5 Solid oxide fuel cells
  • 4. Applications
  • 4.1 Industrial hydrogen recovery
  • 4.2 Cogeneration
  • 4.3 Application to CO2 capture
  • 4.4 Power-to-power energy storage and grid balancing
  • 5. Conclusions and future trends
  • List of abbreviations and acronyms
  • List of symbols
  • Subscript
  • References
  • 19 - Novel bioethanol production processes and purification technology using membranes
  • 1. Introduction
  • 2. The bioethanol production process
  • 2.1 Pretreatment
  • 2.2 Hydrolysis
  • 2.3 Fermentation process
  • 2.4 Integrated processes
  • 3. MR concept and technology
  • 3.1 Main application opportunities of using an MR
  • 3.2 Type of membrane used for inorganic MRs
  • 4. MRs for bioethanol reactions to produce pure hydrogen
  • 5. Conclusion and future trends
  • List of abbreviations and acronyms
  • References
  • Further reading
  • 20 - Redox flow battery
  • 1. Introduction
  • 2. Basis of redox flow batteries
  • 2.1 Working principle
  • 2.2 Configuration
  • 2.3 Key components
  • 2.4 Classification
  • 2.5 Parameters to evaluate the performance of redox flow batteries
  • 3. Aqueous redox flow batteries
  • 3.1 Fe/Cr redox flow battery
  • 3.2 All-vanadium redox flow battery
  • 3.3 Polysulfide/bromine redox flow battery
  • 3.4 Zn/Br flow battery
  • 3.5 Quinone-based redox flow battery
  • 4. Nonaqueous redox flow batteries
  • 4.1 Organometallic nonaqueous redox flow batteries
  • 4.2 Metal-free nonaqueous redox flow batteries
  • 5. Other redox flow batteries
  • 5.1 Semisolid redox flow batteries
  • 5.2 Redox-targeting-based redox flow batteries
  • 6. Membranes and electrodes for redox flow batteries
  • 6.1 Membranes
  • 6.1.1 Membranes for all-vanadium redox flow batteries
  • 6.1.2 Membranes for nonaqueous redox flow batteries
  • 6.2 Electrodes
  • 7. Conclusions and future trends
  • List of abbreviations and acronyms
  • List of symbols
  • References
  • 21 - Artificial leaves using sunlight to produce fuels
  • 1. Introduction
  • 1.1 Principles of artificial photosynthesis and leaves
  • 1.2 Biomimicking approach to developing artificial leaves
  • 2. Components of an artificial leaf
  • 2.1 Anode
  • 2.2 Membrane
  • 2.3 Cathode
  • 3. Conclusions and future trends
  • List of abbreviations and acronyms
  • Acknowledgments
  • References
  • 22 - Nanotechnology in energy storage: the supercapacitors
  • 1. Introduction
  • 2. The capacitors fundamentals
  • 2.1 Supercapacitors versus batteries and fuel cells
  • 2.2 Basic performance definitions and measurements
  • 2.3 Capacitance
  • 2.4 ESR
  • 2.5 Specific energy and efficiency
  • 2.6 Peak power
  • 2.7 Cycle life
  • 3. General classification
  • 3.1 Symmetric SC
  • 3.2 Electrochemical double-layer capacitors
  • 3.3 Electrochemical features of EDLCs
  • 3.4 Pseudocapacitors
  • 3.5 Electrochemical features of pseudocapacitors
  • 3.6 Comparison of EDLCs and pseudocapacitor
  • 3.7 Asymmetric SC
  • 3.8 Hybrid SC
  • 3.9 Hybrid electrolytic capacitors
  • 3.10 Composite
  • 3.11 Battery-type
  • 4. Electrode materials for SCS
  • 4.1 Porous carbon materials for EDLCs
  • 4.2 Electrodes materials for pseudocapacitors
  • 4.3 Metal oxides
  • 4.4 Conducting polymers
  • 4.5 Graphene in SCs
  • 5. Electrolytes for SCS
  • 5.1 Aqueous electrolytes
  • 5.2 Organic electrolytes
  • 5.3 Ionic liquids
  • 5.4 Gel polymer electrolytes
  • 5.5 Solid-state supercapacitors
  • 6. Conclusions and future trends
  • References
  • Further reading
  • V - Making business with new technologies
  • Preface to the section making business with new technologies
  • 23 - How to make a business plan
  • 1. Introduction
  • 1.1 What is a business plan?
  • 1.2 Who needs a business plan?
  • 1.3 What makes a good business plan?
  • 2. How to write a business plan
  • 2.1 Cover page
  • 2.2 The executive summary
  • 2.3 General company description or project team members overview: who
  • 2.4 Idea (product or service) description: what, why
  • 2.5 Business stage section
  • 2.6 Market analysis: how
  • 2.6.1 Target market identification
  • 2.6.2 Target market size
  • 2.6.3 Market segmentation
  • 2.6.4 Market trends
  • 2.6.5 Market growth
  • 2.6.6 Competition in the targeted industry
  • 2.6.7 Entry to market barriers
  • 2.7 Marketing and sales plan
  • 2.8 SWOT analysis
  • 2.9 Business management structure
  • 2.10 Operational plan: how, where
  • 2.11 Business model and revenue model
  • 2.12 Financial plan: when
  • 2.12.1 Expense budget
  • 2.12.2 Budgeting process
  • 2.12.3 Forecasting for future months/years
  • 2.12.4 Financial statement
  • 2.12.5 Main profitability ratios
  • 2.12.6 Debt ratios
  • 2.12.7 Additional ratios
  • 2.12.8 Linking the numbers
  • 2.12.9 Previous investors and funding
  • 2.13 Appendix
  • 3. Conclusions and future trends
  • List of abbreviations and acronyms
  • Further reading
  • 24 - Leveraging intellectual property for commercialization of research
  • 1. Introduction
  • 2. Academic research landscape
  • 3. An overview on global innovation
  • 3.1 The principles of intellectual property law
  • 3.2 IPR protection á la carte
  • 3.3 IP assessment
  • 3.4 Patenting
  • 3.5 Ownership
  • 3.6 Assignment
  • 4. Partnership
  • 4.1 License
  • 4.2 Joint ventures
  • 4.3 Spin-offs
  • 5. Trade secrets
  • 6. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • 25 - The role of start-up companies in creating job opportunities
  • 1. Introduction
  • 2. Focus on start-ups and their role
  • 3. Funding for innovation
  • 3.1 Venture capital
  • 3.2 Private equity
  • 3.3 Business angels
  • 4. The importance of the start-up for the economy
  • 5. Link between university and business
  • 6. Planning and control
  • 6.1 Focus on Italy
  • 6.2 Focus on start-ups based on the green economy
  • 6.3 Focus on Europe
  • 6.4 Exposure: one-off events, coworking, free resources
  • 6.5 Trend spotting: innovation outposts
  • 6.6 Acceleration program
  • 6.7 Procurement and codevelopment
  • 6.8 Investments
  • 6.9 Acquisitions
  • 6.10 Trends 2019
  • 7. Concluding remarks and future trends
  • 7.1 Implications of booming wealth
  • 7.2 Micro and macro
  • 7.3 The end game
  • List of abbreviations and acronyms
  • Further reading
  • 26 - Making projects and business in green chemistry: creating a winning start-up, fund raising, and writing compet ...
  • 1. Creating a winning start-up in green chemistry
  • 1.1 Introduction
  • 1.2 What is a start-up anyway?
  • 1.3 Make a product that users love
  • 1.4 Some considerations
  • 2. Writing a competitive research proposal: how to raise public funds
  • 2.1 Introduction
  • 2.2 Am I to the right party? How to read the call text
  • 2.3 Make the reviewers' life easier
  • 2.4 The travel companions: choose only the best partners
  • 2.5 What next? The project follow-up
  • 3. Conclusions and future trends
  • List of abbreviations and acronyms
  • References
  • Author Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Subject Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

238,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen