Omics Technologies and Bio-engineering

Volume 1: Towards Improving Quality of Life
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. Dezember 2017
  • |
  • 618 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-804749-1 (ISBN)
 

Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care.

  • Covers various aspects of biotechnology and bio-engineering using omics technologies
  • Focuses on the latest developments in the field, including biofuel technologies
  • Provides key insights into omics approaches in personalized and precision medicine
  • Provides a complete picture on how one can utilize omics data in molecular biology, biotechnology and human health care
  • Englisch
  • Saint Louis
  • |
  • USA
  • 9,28 MB
978-0-12-804749-1 (9780128047491)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Omics Technologies and Bio-engineering
  • Copyright Page
  • Dedication
  • Contents
  • List of Contributors
  • About the Editors
  • I. Emerging Fields
  • 1 Overview and Principles of Bioengineering: The Drivers of Omics Technologies
  • 1.1 Introduction
  • 1.1.1 Science of "Omics"
  • 1.2 Genomics
  • 1.3 Transcriptomics
  • 1.4 Proteomics
  • 1.5 Metabolomics
  • 1.6 Glycomics
  • 1.7 Omics-Driven Bioengineering
  • 1.7.1 Cellular Engineering
  • 1.7.2 Enzyme Engineering
  • 1.7.3 Metabolic Engineering
  • 1.8 Bioinformatics Intervention in Omics
  • 1.9 Applications of Omics
  • 1.9.1 Food and Agriculture Sector
  • 1.9.2 Health Sector
  • 1.9.3 Environmental Sector
  • 1.10 Conclusion
  • References
  • 2 Omics Approaches Towards Transforming Personalized Medicine
  • 2.1 Introduction
  • 2.2 Personalized Medicine
  • 2.3 Pharmacogenomics of Various Disorders
  • 2.3.1 Cancer
  • 2.3.2 Cardiovascular Diseases
  • 2.3.3 Infectious Diseases
  • 2.3.4 Immune Disorders
  • 2.4 Applications of Pharmacogenomics
  • 2.4.1 Personalized Medicine
  • 2.4.2 Drug Discovery
  • 2.5 Companion Diagnostics
  • 2.6 Limitations of Pharmacogenomics
  • 2.7 Future Prospects
  • 2.8 Conclusion
  • References
  • Further Reading
  • 3 Omics Approaches in Marine Biotechnology: The Treasure of Ocean for Human Betterments
  • 3.1 Introduction
  • 3.2 Impact of Omics on Marine Biotechnology
  • 3.3 Omics-driven Marine Biotechnology
  • 3.3.1 Genomics
  • 3.3.2 Proteomics
  • 3.3.3 Transcriptomics
  • 3.3.4 Nutrigenomics
  • 3.3.5 Metabolomics
  • 3.4 Challenges and Future Opportunities
  • 3.4.1 Marine Food
  • 3.4.2 Marine Energy
  • 3.4.3 Human Health
  • 3.5 Conclusion
  • References
  • 4 Synthetic Biology: Overview and Applications
  • 4.1 Introduction
  • 4.2 History
  • 4.3 Biology and Chemistry
  • 4.3.1 Cell
  • 4.3.2 Animal Cell
  • 4.3.3 Plant Cell
  • 4.3.4 Function of a Cell
  • 4.3.5 Chemistry
  • 4.3.6 Chemical Composition of a Cell
  • 4.4 Craft and Design
  • 4.4.1 Engineering
  • 4.4.2 Synthetic Morphology
  • 4.4.3 Synthetic Chemistry
  • 4.4.4 Minimal Cell
  • 4.4.5 Rewriting
  • 4.5 Technology
  • 4.5.1 Polypeptides and Proteins
  • 4.5.2 Polynucleotides and DNA and RNA
  • 4.5.3 Restriction Endonucleases
  • 4.5.4 DNA Amplification and Sequencing
  • 4.5.5 DNA and Protein Transfer
  • 4.5.6 Systems Biology
  • 4.5.7 Measurements and Calculations
  • 4.6 Applications
  • 4.6.1 Fundamental and Applied Synthetic Biology
  • 4.6.2 Artificial Life
  • 4.6.3 Biosensor
  • 4.6.4 Synthetic Biological Circuits
  • 4.6.5 Industrial Scale Applications
  • 4.7 Examples
  • 4.7.1 Synthetic Biology Today
  • 4.7.2 Applications
  • 4.7.3 iGEM
  • 4.8 Ethics and Safety
  • 4.8.1 Society, Ethics, and Synthetic Biology
  • 4.8.2 Safety Regulations
  • 4.8.3 Safe Human Practices
  • 4.8.4 Technology Transfer
  • 4.9 Conclusions and Future Perspectives
  • 4.9.1 Promises of Synthetic Biology
  • 4.9.2 Challenges
  • References
  • Weblinks
  • 5 Reverse Engineering and Its Applications
  • 5.1 Introduction
  • 5.2 Applications of Reverse Engineering
  • 5.2.1 Medical Device Design
  • 5.2.2 Pharmaceutical Product Design
  • 5.2.3 Reverse Engineering in Therapeutic Peptide Production
  • 5.2.4 Reverse Engineering in Bioinformatics
  • 5.2.5 Reverse Engineering in Biosystems
  • 5.2.6 Reverse Engineering in Software Design
  • 5.2.7 Reverse Engineering of Software
  • 5.2.8 Reverse Engineering Human Regulatory Networks
  • 5.3 Laws, Economics, and Ethics Governing Reverse Engineering
  • 5.4 Conclusion
  • 5.4 Future Direction
  • References
  • Further Reading
  • 6 Omics Approaches in Forensic Biotechnology: Looking for Ancestry to Offence
  • 6.1 Introduction
  • 6.2 Importance of Omics Approaches in Studying DNA
  • 6.2.1 The DNA
  • 6.2.2 The Genomic Approach
  • 6.2.3 The Transcriptomic Approach
  • 6.2.4 The Proteomics Approach
  • 6.2.5 The Metabolomics Approach
  • 6.2.6 The Toxicogenetics/Pharmacogenetics Approach
  • 6.3 Ancestry and Phylogeny
  • 6.4 DNA Fingerprinting
  • 6.4.1 History
  • 6.4.2 What is DNA Profiling?
  • 6.4.3 Sample Collection From the Suspect
  • 6.4.4 The Process of DNA Extraction
  • 6.4.5 Various Techniques and Analysis Employed in DNA Profiling
  • 6.4.5.1 Dideoxy Method
  • 6.4.5.2 Single Nucleotide Polymorphisms
  • 6.4.5.3 Variable Number Tandem Repeats/Minisatellites
  • 6.4.5.4 STRs/Microsatellites
  • 6.4.5.5 Restriction Fragment Length Polymorphisms
  • 6.4.5.6 Analysis of Degraded or Low Template DNA
  • 6.5 Studying Parenthood
  • 6.5.1 Mitochondrial DNA Analysis
  • 6.5.2 Y-Chromosome Analysis
  • 6.5.3 Forensic DNA Phenotyping
  • 6.6 Application of Omics in Criminology
  • 6.6.1 DNA Databases
  • 6.7 Conclusion
  • References
  • Further Reading
  • 7 Biotechnology and Bioengineering in Astrobiology: Towards a New Habitat for Us
  • 7.1 Introduction to Astrobiotechnology and Astrobioengineering
  • 7.2 Biotechnological Approaches in Detecting Life in Space
  • 7.3 Integration of Biotechnology and Astrobiology
  • 7.4 Advanced Integrated Technologies in Astrobiology for Finding Adequate Habitat Conditions
  • 7.4.1 Proteins (Antibodies)-Based Approaches
  • 7.4.2 Microfluidics
  • 7.4.3 Microarray Technology
  • 7.5 Solar System Exploration
  • 7.6 Conclusion and Future Prospects
  • References
  • Further Reading
  • 8 Lab-on-a-Chip Technology and Its Applications
  • 8.1 Introduction
  • 8.1.1 Diagnostics
  • 8.1.1.1 DNA Extraction and Purification on LOC Devices
  • 8.1.1.2 PCR, qPCR, and Molecular Detection on LOC Devices
  • 8.1.2 Genomic Application
  • 8.1.3 Microarray
  • 8.1.4 Biochemical Applications
  • 8.1.5 Proteomics
  • 8.1.6 Biosensors
  • 8.1.7 Cell Research
  • 8.1.8 Drug Development
  • 8.2. Conclusion and Future Directions
  • References
  • Further Reading
  • 9 Robotics and High-Throughput Techniques
  • 9.1 Introduction
  • 9.1.1 Technologies in Biorobotics
  • 9.1.2 Soft Robotics
  • 9.1.2.1 Structure
  • 9.1.2.2 Bio-inspired Soft Robots
  • 9.1.2.3 Advantages
  • 9.2 Wonders in the Field of Biorobotics
  • 9.2.1 Techniques Used in Biorobotics
  • 9.2.1.1 Electromyography
  • 9.2.1.2 Electroencephalography: Brain-Computer Interfaces or Brain-Machine Interfaces
  • 9.2.1.3 Hybrid EEG-EMG Control Interface
  • 9.2.1.4 Plant Roots-Inspired Robotic Solutions: The PLANTOID Robot
  • 9.2.1.5 Sperm-driven Micro-Biorobot
  • 9.2.1.6 Robotic Cell Injection
  • 9.2.1.7 Biorobotics in Medicine
  • 9.2.1.8 Natural Orifice Surgery Through Biorobotics
  • 9.3 Future Perspective
  • References
  • Further Reading
  • 10 3D Printing Technologies and Their Applications in Biomedical Science
  • 10.1 Introduction
  • 10.2 Types of Printers
  • 10.2.1 Stereolithography
  • 10.2.1.1 Parts of Stereolithographic Machine
  • 10.2.2 Fused Deposition Modeling
  • 10.2.3 Inkjet Printing
  • 10.2.4 Selective Sintering Printing
  • 10.2.5 Laminated Object Manufacturing
  • 10.3 Application of 3D Printing
  • 10.3.1 Craniofacial Plastic Surgery
  • 10.3.2 Skull Reconstruction
  • 10.3.3 Cranioplasty for Correction of Syndromic Craniosynostosis
  • 10.3.4 Facial Bone Fractures
  • 10.3.5 Mandibular Reconstruction
  • 10.3.6 Human Skin
  • 10.3.7 Tissue Engineering
  • 10.3.8 Ears
  • 10.3.9 Cartilage
  • 10.3.10 Heart Valve
  • 10.3.11 Tooth and Peridontal Regeneration
  • 10.4 Oncology and 3D Printing
  • 10.4.1 Cancer Microenvironment Engineering for In Vitro 3D models
  • 10.5 Future Directions
  • References
  • 11 Next-Generation Sequencing and Data Analysis: Strategies, Tools, Pipelines and Protocols
  • 11.1 Introduction
  • 11.2 Sequencing Platforms
  • 11.2.1 Illumina Platform
  • 11.2.2 Ion Torrent Platform
  • 11.2.3 PacBio Platform
  • 11.3 Structural Genomics
  • 11.3.1 De Novo Assembly
  • 11.3.2 Reference Assembly
  • 11.3.3 Genome Annotation
  • 11.4 Functional Genomics
  • 11.4.1 RNA-Seq: De Novo and Reference-Based Approaches
  • 11.4.2 ChIP-Seq
  • 11.5 Protocols and Pipelines for Metagenomic Analysis
  • 11.5.1 Analysis of the Microbial Diversity Through PCR Targeting 16S rRNA Genes
  • 11.5.2 Whole-Genome Metagenomic Analysis
  • 11.5.3 Obtaining Genomes From Metagenomic Data
  • 11.6 Future Directions
  • References
  • 12 Computational Techniques in Data Integration and Big Data Handling in Omics
  • 12.1 Introduction
  • 12.2 Big Data Concept
  • 12.3 The Three V's
  • 12.3.1 Volume
  • 12.3.2 Velocity
  • 12.3.3 Variability in Data Origin
  • 12.4 Big Data on Computational Biology Applications
  • 12.5 Tools for Analysis
  • 12.6 Future Direction About Big Data
  • References
  • 13 Bioinformatics and Systems Biology in Bioengineering
  • 13.1 Bioinformatics and Major Databases
  • 13.2 Systems Biology-A Brief Overview
  • 13.2.1 Mathematical Representations and Modeling
  • 13.3 Reverse Engineering of Network Interactions
  • 13.3.1 Correlation
  • 13.3.2 Information Theory
  • 13.3.3 Bayesian Inference
  • 13.4 Bioengineering and Systems Biology
  • 13.4.1 Synthetic Biology
  • 13.4.2 Tissue Engineering
  • 13.5 From Biological Networks to Modern Therapeutics
  • 13.5.1 Disease Modeling
  • 13.5.2 Drug Modeling
  • 13.6 Bioinformatics Tools and Resources
  • 13.7 Future Advancements
  • 13.8 Conclusion
  • References
  • II. Animal and medical BT
  • 14 Techniques for Nucleic Acid Engineering: The Foundation of Gene Manipulation
  • 14.1 Nucleic Acid Isolation Techniques
  • 14.1.1 Introduction
  • 14.1.2 Basics of Nucleic Acid Isolation: A Brief Introduction
  • 14.1.3 Components of Nucleic Acid Isolation
  • 14.1.3.1 Cell Disruption (Cell Lysis)
  • 14.1.3.1.1 Chemical Lysis
  • 14.1.3.1.2 Mechanical Lysis: Methods Involve Grinding, Shearing, Beating, and Shock
  • 14.1.3.2 Removal of Artifacts
  • 14.1.3.3 Precipitation
  • 14.1.3.4 Washing and Resuspension
  • 14.1.4 Principles of Methods of Extraction
  • 14.1.4.1 Organic Methods
  • 14.1.4.1.1 Phenol-Chloroform Method
  • 14.1.4.1.2 Guanidinium Thiocyanate-Phenol-Chloroform Method (Commercial Names: TRI, TRIzol)
  • 14.1.4.1.3 Cetyltrimethylammonium Bromide Method
  • 14.1.4.2 Inorganic Methods
  • 14.1.4.2.1 Salting-Out Method
  • 14.1.4.2.2 Cesium Chloride Density Gradient Method
  • 14.1.4.3 Solid-Based Extraction Method
  • 14.1.4.3.1 Silica-Based Purification
  • 14.1.4.3.2 Magnetic Separation
  • 14.1.4.3.3 Anion Exchange Purification
  • 14.1.4.3.4 FTA Technology (Trademark of General Electric Company): A Fast Technology for Analysis of Nucleic Acids
  • 14.1.5 Automation and High-Throughput Technology
  • 14.1.6 Choosing the Method
  • 14.1.6.1 Genomic DNA Isolation
  • 14.1.6.2 RNA Isolation
  • 14.1.6.3 Plasmid DNA Isolation
  • 14.1.6.4 Mitochondrial DNA Isolation
  • 14.1.6.5 Viral DNA/RNA Isolation
  • 14.1.6.6 Plant DNA/RNA and Chloroplast DNA Isolation
  • 14.1.6.7 DNA/RNA Isolation From Other Materials
  • 14.1.6.7.1 Paraffin Blocks
  • 14.1.6.7.2 Ancient Bone DNA Isolation
  • 14.1.7 Quality Control
  • 14.1.7.1 Agarose Gel Electrophoresis Control
  • 14.1.7.1.1 Checking GDNA
  • 14.1.7.1.2 Checking Total RNA
  • 14.1.7.2 Spectrophotometry
  • 14.1.7.3 Microfluidics-Based High-Throughput Technology
  • 14.1.8 GLP for Nucleic Acid Isolation
  • 14.1.8.1 A Room of Its Own
  • 14.1.8.2 Sampling
  • 14.1.8.3 Extraction
  • 14.1.8.4 Post Processes
  • 14.1.9 Conclusion and Future Perspectives
  • 14.2 Restriction Enzyme Techniques
  • 14.2.1 The Discovery of Restriction Enzymes (Endonucleases)
  • 14.2.2 Where Are They Found?
  • 14.2.3 Mechanism of Their Action
  • 14.2.4 Classification of Restriction Enzyme Types
  • 14.2.4.1 Infidelity Among the Restriction Enzymes
  • 14.2.5 Examples of Restriction Enzymes
  • 14.2.5.1 Sticky-End (Cohesive) Cutters
  • 14.2.5.2 Blunt-End Cutters
  • 14.2.5.3 Utilization of Restriction Enzymes in Biotechnology
  • 14.2.5.4 Detecting SNPs (PCR Restriction Fragment Length Polymorphism)
  • 14.2.5.5 Gene Cloning
  • 14.2.5.6 DNA Footprinting
  • 14.2.5.7 Artificial Restriction Enzymes
  • 14.2.5.8 Restriction Endonuclease Utilization in Diagnostics
  • 14.2.6 Restriction Enzyme Digestion Protocol
  • 14.2.7 Summary
  • 14.3 PCR Techniques
  • 14.3.1 PCR Chronicle
  • 14.3.2 PCR Reaction Components
  • 14.3.2.1 PCR Primer Design
  • 14.3.2.2 PCR Steps
  • 14.3.2.3 PCR Optimization
  • 14.3.2.3.1 PCR Buffer Concentration
  • 14.3.2.3.2 DNA Polymerase Enzyme of Choice
  • 14.3.3 PCR Instrumentation
  • 14.3.3.1 Applied Biosystems
  • 14.3.3.2 Bio-Rad
  • 14.3.3.3 Eppendorf
  • 14.3.4 Recent Advances in PCR Technology and Its Applications
  • 14.3.4.1 Hot Start PCR
  • 14.3.4.2 Reverse Transcriptase PCR
  • 14.3.4.3 Droplet Digital PCR
  • 14.3.4.4 Long PCR
  • 14.3.4.5 Multiplex PCR
  • 14.3.4.6 Colony PCR
  • 14.3.4.7 Nested PCR
  • 14.3.4.8 Quantitative Real-Time PCR
  • 14.3.4.9 PCR Site-Directed Mutagenesis
  • 14.3.4.10 Other PCR Techniques
  • 14.4 Blotting Techniques
  • 14.4.1 General Principle
  • 14.4.1.1 Southern Blotting
  • 14.4.1.1.1 The Order of Sequence of Southern Blot Analysis
  • 14.4.1.1.2 Southern Blot Applications
  • 14.4.1.2 Northern Blotting
  • 14.4.1.2.1 Northern Blot Protocol
  • 14.4.1.2.1.1 RNA Gels
  • 14.4.1.2.2 The Order of Sequence of Northern Blot Analysis
  • 14.4.1.2.3 Applications of Northern Blots
  • 14.4.1.3 Western Blotting
  • 14.4.1.3.1 The Order of Sequence of Western Blot Analysis
  • 14.4.1.3.2 Western Blot Applications
  • 14.4.2 Western Blot Instrumentation
  • 14.4.2.1 Bio-Rad
  • 14.4.2.2 ProteinSimple
  • 14.4.2.3 Life Technologies
  • 14.4.2.4 Additional Blotting Techniques
  • 14.4.2.4.1 Dot Blot
  • 14.4.2.4.2 Reverse Dot Blot
  • 14.4.2.4.2.1 Power of Blotting
  • 14.4.2.4.2.2 Limitations of Blotting
  • 14.5 Recombinant DNA Techniques
  • 14.5.1 Creation of Recombinant (Artificial) DNA
  • 14.5.2 Chimeric/rDNA
  • 14.5.2.1 Steps of Cloning DNA Fragments (Gene Cloning) to Create rDNA
  • 14.5.3 Expression of rDNA
  • 14.5.4 Applications of rDNA Technology
  • 14.5.5 Controversy of rDNA
  • 14.5.6 Genetically Modified Organisms
  • 14.5.7 Genetically Modified Food
  • 14.6 DNA Sequencing Technologies
  • 14.6.1 Brief Introduction
  • 14.6.2 First-Generation Sequencing Techniques
  • 14.6.2.1 Maxam's and Gilbert's Chemical Method
  • 14.6.2.2 Sanger Sequencing
  • 14.6.3 Automation in DNA Sequencing
  • 14.6.4 Developments and High-Throughput Methods in DNA Sequencing
  • 14.6.4.1 Pyrosequencing Method
  • 14.6.4.2 The Genome Sequencer 454 FLX System
  • 14.6.4.3 Illumina/Solexa Genome Analyzer
  • 14.6.5 Transition Sequencing Techniques
  • 14.6.5.1 Ion-Torrent's Semiconductor Sequencing
  • 14.6.5.2 Helico's Genetic Analysis Platform
  • 14.6.6 Third-Generation Sequencing Techniques
  • 14.7 Conclusion
  • References
  • 15 Techniques for Protein Analysis
  • 15.1 Protein Identification
  • 15.1.1 Sequencing
  • 15.1.1.1 Determining Amino Acid Composition With Hydrolysis
  • 15.1.1.2 Quantitative Analysis
  • 15.1.2 Edman Degradation
  • 15.1.2.1 The Edman Degradation Reaction
  • 15.1.2.2 Limitations of the Edman Degradation
  • 15.1.3 Gel Electrophoresis
  • 15.1.3.1 Polyacrylamide Gel Electrophoresis
  • 15.1.3.2 Isoelectric Focusing
  • 15.1.3.3 Two-Dimensional Gel Electrophoresis
  • 15.1.4 Isotope Labeling
  • 15.1.4.1 Enzymatic Labeling
  • 15.1.4.2 Isotope-Coded Affinity Tag
  • 15.1.4.3 Stable-Isotope Labeling in Cell Culture
  • 15.1.5 Mass Spectrometry
  • 15.1.5.1 Principle and Instrumentation
  • 15.1.5.2 Components of the Instrument
  • 15.1.5.2.1 Device for Sample Input Into the Machine
  • 15.1.5.2.2 Molecular Ionization Source
  • 15.1.5.2.3 Mass Analyzer
  • 15.1.5.2.4 Detector
  • 15.1.5.2.5 Vacuum System and Computer-Based Data Obtaining and Processing System
  • 15.1.5.3 Liquid Chromatography-Mass Spectrometry
  • 15.1.5.4 Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry
  • 15.1.5.5 Tandem Mass Spectrometry
  • 15.1.6 Enzyme-Linked Immunosorbent Assay
  • 15.1.6.1 Indirect ELISA
  • 15.1.6.2 Sandwich ELISA
  • 15.1.6.3 Competitive ELISA
  • 15.1.6.4 Reverse ELISA
  • 15.1.7 Immunohistochemistry
  • 15.1.7.1 Sample Preparation
  • 15.1.7.2 Sample Labeling
  • 15.1.7.3 Sample Visualization
  • 15.1.7.4 Applications
  • 15.2 Protein Structural Analysis
  • 15.2.1 Circular Dichroism
  • 15.2.2 Nuclear Magnetic Resonance Spectroscopy
  • 15.2.3 X-Ray Crystallography
  • 15.2.4 Electron Microscopy
  • 15.3 Protein Purification
  • 15.3.1 Chromatography
  • 15.3.1.1 Column Chromatography
  • 15.3.1.2 Size-Exclusion (Gel-Filtration) Chromatography
  • 15.3.1.3 Ion-Exchange Chromatography
  • 15.3.1.4 Affinity Chromatography
  • 15.3.1.5 Reverse Phase High-Performance Liquid Chromatography
  • 15.4 Protein Quantitation With Western Blotting
  • 15.4.1 Tissue Preparation
  • 15.4.2 Gel Electrophoresis
  • 15.4.3 Transfer Methods
  • 15.4.4 Blocking Buffers
  • 15.4.5 Detection
  • 15.4.5.1 Colorimetric Detection
  • 15.4.5.2 Chemiluminescent Detection
  • 15.4.5.3 Radioactive Detection
  • 15.4.5.4 Fluorescent Detection
  • 15.4.6 Protein Microarray
  • 15.4.6.1 Analytical Microarray
  • 15.4.6.2 Functional Protein Microarray
  • 15.4.6.3 Reverse Phase Protein Array
  • 15.5 Conclusion
  • References
  • 16 Engineering Monoclonal Antibodies: Production and Applications
  • 16.1 Introduction
  • 16.2 Structures and Functions of Antibodies
  • 16.2.1 Polyclonal Antibodies
  • 16.2.2 Monoclonal Antibodies
  • 16.2.2.1 Production of Monoclonal Antibodies
  • 16.2.2.1.1 Monoclonal Antibody Production by Hybridoma Technique
  • 16.2.2.1.2 Monoclonal Antibody Production by Phage-Display Technique
  • 16.2.2.1.3 Monoclonal Antibody Production Using Transgenic Animals
  • 16.2.2.1.4 Production of Antibodies in Transgenic Plants
  • 16.3 Clinical Usage of the Antibodies
  • 16.3.1 Antibodies in Diagnosis
  • 16.3.1.1 ELISA
  • 16.3.1.2 Western Blotting
  • 16.3.1.3 Flow Cytometric Analyses
  • 16.3.1.4 Immunhistochemistry
  • 16.3.1.4.1 Tissue Preparation
  • 16.3.1.4.2 Antigen Retrieval
  • 16.3.1.4.3 Detection Methods
  • 16.3.1.5 Immunoelectrophoresis
  • 16.3.1.6 Immunodiffusion
  • 16.3.2 Antibodies in Treatment
  • 16.3.2.1 Hematology/Oncology
  • 16.3.2.2 Transplantation
  • 16.3.2.3 Cardiology
  • 16.3.2.4 Infection
  • 16.3.2.5 Rheumatology
  • 16.3.2.6 Gastroenterology
  • 16.3.2.7 FDA-Approved Monoclonal Antibodies
  • 16.4 Conclusion
  • References
  • Weblinks
  • 17 Cell and Tissue Culture: The Base of Biotechnology
  • 17.1 Introduction
  • 17.2 Cell Culture Laboratory
  • 17.2.1 Safety
  • 17.2.2 Cell Culture Equipment and Laboratory Design
  • 17.2.3 Aseptic Technique
  • 17.2.4 Cross Contamination
  • 17.2.5 Biological Contamination
  • 17.3 Cell Culture
  • 17.3.1 Cell Culture System
  • 17.3.2 Cell Line and Culture Monitoring
  • 17.3.3 Primary Culture
  • 17.3.4 Cell Isolation
  • 17.3.5 Culture Environment
  • 17.3.6 Cell Morphology
  • 17.3.7 Cells
  • 17.3.8 Stem Cells
  • 17.4 Methods
  • 17.4.1 Growth and Maintenance of Cells in Culture
  • 17.4.2 Subculturing Adherent Cells
  • 17.4.3 Subculturing Suspension Cells
  • 17.4.4 Viability and Proliferation Assay of Cultured Cells
  • 17.4.5 Freezing Cells (Cryopreservation)
  • 17.4.6 Thawing Frozen Cells
  • 17.4.7 Transplantation of Cultured Cells
  • 17.4.8 Differentiation of Cells
  • 17.4.9 Characterization of Cells
  • 17.4.10 Apoptosis, Necrosis, Senescence, and Quiescence
  • 17.4.11 Senescence
  • 17.4.12 Quiescence
  • 17.4.13 Production From Cell Culture
  • 17.5 Conclusion
  • References
  • 18 In Vitro and In Vivo Animal Models: The Engineering Towards Understanding Human Diseases and Therapeutic Interventions
  • 18.1 Introduction
  • 18.2 Mouse Model
  • 18.2.1 LDLR-/- Mice
  • 18.2.2 ApoE-/- Mice
  • 18.2.3 Transgenic Mice of Cardiovascular Diseases
  • 18.2.4 Diabetes-Accelerated Atherosclerosis Mouse Model
  • 18.2.5 Calcium Chloride-Induced AAA
  • 18.2.6 Spontaneous Mouse Mutants
  • 18.2.7 Mouse Model for Liver Metastases
  • 18.2.8 Mouse Model of Colon Cancer
  • 18.2.9 Mouse Model of Fatty Liver Disease
  • 18.2.10 Mouse Models for Neurodegenerative Diseases
  • 18.2.11 Primary Neuronal Cultures and Neuronal Cell Lines
  • 18.2.12 Primary Microglia Cultures
  • 18.2.13 Transgenic Mouse of PD
  • 18.2.14 Transgenic Mouse Model for Alzheimer's Disease
  • 18.2.15 Animal Models of Heart Failure
  • 18.2.15.1 Localized Aortic Perfusion With Elastase
  • 18.2.15.2 Decellularized Xenografts
  • 18.3 Rat Models
  • 18.3.1 Rat Models for Celiac Disease
  • 18.3.2 Nile Grass Rats
  • 18.4 Porcine Models
  • 18.4.1 Gottingen Miniature Pig Model
  • 18.4.2 Transgenic Huntington Disease Minipigs
  • 18.4.3 Transgenic Pig Model of Amyotrophic Lateral Sclerosis
  • 18.4.4 Pig Models for Ataxia Telangiectasia
  • 18.4.5 Pig Models for Myocardial Infarction
  • 18.5 Zebrafish Model
  • 18.5.1 Zebrafish Models of Epilepsy
  • 18.5.2 Zebrafish Model of AD
  • 18.5.3 Zebrafish Model of PD
  • 18.6 Rabbit Models
  • 18.6.1 Rabbit Model of Inflammation-Associated Atherosclerosis
  • 18.6.2 Rabbit Model for Myocardial Damage
  • 18.7 Conclusion
  • References
  • Further Reading
  • 19 Medical Biotechnology: Techniques and Applications
  • 19.1 Introduction
  • 19.2 Background of Medical Biotechnology
  • 19.2.1 Techniques
  • 19.2.1.1 Polymerase Chain Reaction
  • 19.2.1.2 Fluorescence In Situ Hybridization
  • 19.2.1.3 Sequencing
  • 19.2.1.4 Microarrays
  • 19.2.1.5 Cell Culture
  • 19.2.1.6 Interference RNA
  • 19.2.1.7 Genome Editing
  • 19.2.2 Emerging Trends
  • 19.2.2.1 Stem Cells
  • 19.2.2.2 The Human Genome Project
  • 19.2.2.3 Recombinant DNA Technology
  • 19.3 Products of Medical Biotechnology
  • 19.3.1 Antibiotics
  • 19.3.2 Recombinant Proteins
  • 19.3.3 Hybridoma and MAb
  • 19.3.4 Vaccines
  • 19.3.5 Stem Cell Therapy
  • 19.3.6 Tissue Engineering
  • 19.4 Conclusion
  • References
  • 20 Tissue Engineering: Towards Development of Regenerative and Transplant Medicine
  • 20.1 Introduction
  • 20.2 Types of Cells (Proliferation and Differentiation)
  • 20.3 Scaffolds
  • 20.3.1 ECM Scaffolds
  • 20.3.2 Natural Biomaterials
  • 20.3.3 Synthetic Biomaterials
  • 20.3.4 Scaffold-Free Strategies
  • 20.4 Biomolecules Importance in Tissue Engineering
  • 20.5 Assembly Methods of a Tissue Culture and Its Maintenance
  • 20.5.1 Engineering Design Aspects
  • 20.5.2 Biomechanical Aspects of Design (Bioreactors)
  • 20.6 Regeneration of a Damaged Tissue Using Tissue Engineering
  • 20.6.1 Blood Vessels
  • 20.6.2 Skin
  • 20.6.3 Bone and Cartilage
  • 20.6.4 Cardiovascular Diseases
  • 20.7 The Formation of Bioartificial Organs Using Cell-Based Tissue Engineering
  • 20.7.1 Liver
  • 20.7.2 Bladder
  • 20.7.3 Kidney
  • 20.8 Cell Therapies in Tissue Engineering
  • 20.9 Use of Stem Cells and Therapeutic Cloning in Tissue Engineering
  • 20.10 Aid of Nanotechnology in Tissue Engineering
  • 20.11 The Challenges of Tissue Engineering
  • 20.12 Conclusion and Future Prospects
  • 20.12.1 Conclusion
  • References
  • 21 Therapeutic Aspects of Stem Cells in Regenerative Medicine
  • 21.1 Introduction
  • 21.2 Characteristics of Stem Cells Suitable for Regenerative Medicine
  • 21.3 Policies of United States and Other Nations in the Field of Stem Cell Research
  • 21.4 Stem Cells in Regenerative Medicine of Different Diseases
  • 21.4.1 Spinal Cord Injuries
  • 21.4.2 Heart and Vascular System
  • 21.4.3 Periodontal Diseases
  • 21.4.4 Ocular Diseases
  • 21.4.5 Diabetes
  • 21.4.6 Skin Wounds and Burns
  • 21.4.7 Ischemic Limb Disease
  • 21.4.8 Bone, Cartilage, and Muscle-Related Abnormalities
  • 21.4.9 Neurological Disorder
  • 21.4.10 Cancers
  • 21.4.11 Liver Injury and Cirrhosis
  • 21.4.12 Muscular Dystrophy
  • 21.5 Challenges in Stem Cell Research
  • 21.6 Concluding Remarks
  • References
  • 22 Genetic Engineering: Towards Gene Therapy and Molecular Medicine
  • 22.1 Introduction: Gene Therapy and Molecular Medicine
  • 22.1.1 Germinal Gene Therapy
  • 22.1.2 Somatic Gene Therapy
  • 22.2 Historical Significance
  • 22.3 Gene Transfer Strategy: Delivery Vehicle
  • 22.3.1 Viral Vectors: Gene Therapy
  • 22.3.1.1 Retroviral Vectors
  • 22.3.1.2 Adenovirus-Based Vectors
  • 22.3.2 Nonviral Vectors: Liposome
  • 22.4 Clinical Trials (In Vivo and Ex Vivo): An update
  • 22.5 Gene Therapy and Disease/Disorders
  • 22.5.1 Gene Therapy and Hemophilia
  • 22.5.2 Gene Therapy and Cardiovascular Disorders
  • 22.5.2.1 Angiogenic Gene Therapy
  • 22.5.2.2 Non-Angiogenic Gene Therapy
  • 22.5.2.3 Combination Therapy
  • 22.5.3 Gene Therapy and Diabetes
  • 22.5.4 Gene Therapy and Neurological Disorders
  • 22.5.4.1 Parkinson's Disease
  • 22.5.4.2 Alzheimer's disease
  • 22.5.5 Gene Therapy and HIV Infection
  • 22.5.5.1 Genetic Approaches to Inhibit HIV Replication
  • 22.5.5.2 Transdominant Negative Proteins
  • 22.5.5.3 Single-Chain Antibodies (Intrabodies)
  • 22.5.5.4 Endogenous Cellular Proteins as Anti-HIV Agents
  • 22.5.5.5 Nucleic Acid-Based Gene Therapy Approaches: RNA Decoys
  • 22.5.5.6 Antisense DNA and RNA
  • 22.5.5.7 Ribozymes (Catalytic Antisense RNA)
  • 22.5.5.8 DNA Vaccines
  • 22.5.5.9 HIV-Specific Cytotoxic T Lymphocytes
  • 22.5.6 Gene Therapy and Various Cancers
  • 22.5.6.1 Gene Therapy and Hematological Malignancy
  • 22.5.6.2 Gene Therapy and Oral Cancer
  • 22.5.6.3 Gene Therapy and Breast Cancer
  • 22.5.6.4 Gene Therapy and Ovarian Cancer
  • 22.5.6.5 Gene Therapy and Lung Cancer
  • 22.5.6.6 Gene Therapy and Prostate Cancer
  • 22.6 Obstacles and Barriers
  • 22.6.1 Activation and Delivery of Gene
  • 22.6.2 Controlled Gene Expression
  • 22.6.3 Activation of Immune Response
  • 22.6.4 Commercially Unviable
  • 22.6.5 Safety Issues
  • 22.7 Conclusions and Future Prospective
  • Acknowledgments
  • References
  • 23 Biotechnology for Biomarkers: Towards Prediction, Screening, Diagnosis, Prognosis, and Therapy
  • 23.1 Introduction
  • 23.2 Evolution of Biomarkers
  • 23.3 Classification of Biomarkers
  • 23.3.1 Susceptibility Biomarkers
  • 23.3.1.1 Infectious Diseases
  • 23.3.1.2 Cardiovascular Diseases
  • 23.3.1.3 Rheumatoid Arthritis
  • 23.3.2 Diagnostic and Prognostic Biomarkers
  • 23.3.2.1 Cancer
  • 23.3.2.2 Rheumatoid Arthritis
  • 23.3.3 Therapeutic Biomarkers
  • 23.3.3.1 Infectious Diseases
  • 23.3.3.2 Cardiology
  • 23.3.3.3 Rheumatoid Arthritis
  • 23.4 Food and Drug Administration-Approved Biomarkers
  • 23.5 Biomarkers for Drug Discovery and Development
  • 23.6 Regulatory Issues
  • 23.7 Future Prospects
  • 23.8 Conclusion
  • References
  • Further Reading
  • 24 Omics Approaches in In Vitro Fertilization
  • 24.1 Introduction
  • 24.2 Historical Aspects
  • 24.3 Human IVF
  • 24.4 Benefits of IVF
  • 24.5 Omics Approaches in IVF
  • 24.5.1 Genomics in IVF
  • 24.5.2 Transcriptomics in IVF
  • 24.5.3 Proteomics in IVF
  • 24.5.4 Metabolomics in IVF
  • 24.5.5 Pharmacogenomics of IVF
  • 24.6 Techniques and Protocols Involved in Different Steps of IVF and Embryo Transfer
  • 24.7 Variations of IVF
  • 24.8 Success Rates of IVF
  • 24.9 Complications of IVF
  • 24.10 Cost and Convenience
  • 24.10.1 Clinical Factors
  • 24.10.2 Patient Factors
  • 24.10.3 Medications
  • 24.10.4 Precycle Costs
  • 24.10.5 Cycle Costs
  • 24.10.5.1 Embryo Freezing Costs
  • 24.11 Challenges and Issues
  • 24.11.1 Ethical
  • 24.11.2 Social
  • 24.11.3 Religious
  • 24.11.4 Psychological and Emotional
  • 24.12 Legal Issues
  • 24.13 Conclusion and Future Prospective
  • References
  • 25 Safety and Ethics in Biotechnology and Bioengineering: What to Follow and What Not to
  • 25.1 Introduction
  • 25.1.1 Addressing Ethical Issues
  • 25.1.2 Organizations Framing Research Ethics in Biotechnology and Bioengineering
  • 25.1.3 Ethical Concern in Agriculture
  • 25.1.3.1 Sustainable Agriculture
  • 25.1.3.2 Transgenic Plants
  • 25.1.4 Impact of Biotechnology and Bioengineering on Animals
  • 25.1.4.1 Transgenic Animals
  • 25.1.5 Ethical Concerns of Xenotransplantation
  • 25.1.6 Ethical Issues in Stem Cell Research
  • 25.1.7 Ethical Issues in Aquaculture Industry
  • 25.1.8 Ethics in Biobanking
  • 25.1.8.1 Biosafety Issues of Modern Biotechnology and Bioengineering
  • 25.1.8.2 Adverse Effect on Health of People/Environment
  • 25.1.8.3 Unpredictable and Unintended effects
  • 25.1.8.4 Impacts on Socioeconomic Welfare of Countries and of Communities
  • 25.1.8.5 Impact of Traditional Values and Culture
  • 25.1.8.6 Ethical Issues in Medical Biotechnology
  • 25.1.8.7 Protecting Human Beings in Clinical Trials
  • 25.1.8.8 Accountability
  • 25.1.8.9 Affordability
  • 25.1.8.10 Privacy
  • 25.1.8.11 Intellectual Property Rights
  • 25.2 Conclusion
  • References
  • Further Reading
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

110,61 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen