Natural Capital and Exploitation of the Deep Ocean

 
 
Oxford University Press
  • erschienen am 28. August 2020
  • |
  • 241 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-19-257877-8 (ISBN)
 
The deep ocean is by far the planet's largest biome and holds a wealth of potential natural assets. Human exploitation of the deep ocean is rapidly increasing whilst becoming more visible to many through the popular media, particularly film and television. The scientific literature of deep-sea exploitation and its effects has also rapidly expanded as a direct function of this increased national and global interest in exploitation of deep-sea resources, both biological (e.g. fisheries, genetic resources) and non-biological (e.g. minerals, oil, gas, methane hydrate). At the same time there is a growing interest in deep-sea contamination (including plastics), with many such studies featured in high profile scientific journals and covered by global media outlets. However, there is currently no comprehensive integration of this information in any form and these topics are only superficially covered in classic textbooks on deep-sea biology. This concise and accessible work provides an understanding of the relationships between biodiversity and ecosystem functioning, both at the seafloor and in the water column, and how these might be affected as a result of human interaction, exploitation and, ultimately, environmental change. It follows a logical progression from geological and physical processes, ecology, biology, and biogeography, to exploitation, management, and conservation. Natural Capital and Exploitation of the Deep Ocean is aimed at marine biologists and ecologists, oceanographers, fisheries scientists and managers, fish biologists, environmental scientists, and conservation biologists. It will also be of relevance and use to a multi-disciplinary audience of fish and wildlife agencies, NGOs, and government departments involved in deep-sea conservation and management.
  • Englisch
  • Oxford
  • |
  • Großbritannien
  • 6,11 MB
978-0-19-257877-8 (9780192578778)
weitere Ausgaben werden ermittelt
Maria Baker is co-lead for the international Deep-Ocean Stewardship Initiative (DOSI) and the International Network for scientific investigation of DEEP-sea ecosystems (INDEEP). The overarching aim of these two programmes is to ensure deep-sea science informs national and international policy process in a way that is unique and essential at this critical time for the future of ocean biodiversity. She organises and chairs workshops, meetings and special sessions, writing accessible, translated texts (including policy briefs) on subject areas concerning, for example, impacts of climate change in the deep ocean, encouraging engagement of scientists and reporting and budgets are my current focus. Her research activity focuses on anthropogenic impacts on deep-sea ecosystems and sustaining deep-sea biodiversity in areas beyond national jurisdiction. Eva Ramirez-Llodra is a senior scientist at NIVA (Norway) and Science Coordinator at REV Ocean (Norway). Her main expertise is in marine biodiversity and early life history of deep-sea benthic fauna in relation to anthropogenic stressors, as well as in international project management and an established international network of contacts, including leading/advisory roles in INDEEP and DOSI. Paul Tyler is Emeritus Professors of Deep-Sea Biology at the University of Southampton, UK. He previously worked with John Gage in the NE Atlantic on RRS Challenger examining life history biology of deep-sea organisms. In the late 1980s he started deep-sea experimental work on cruises with Craig Young using submersibles in the Bahamas and Gulf of Mexico. In 1994 he was awarded a DSc and a Personal Chair. The research programme involved the Census of Marine Life and the discovery of hydrothermal vents in the Southern Ocean.
  • Cover
  • Natural Capital and Exploitation of the Deep Ocean
  • Copyright
  • Preface
  • Acknowledgements
  • Contents
  • List of contributors
  • CHAPTER 1: Introduction: Evolution of knowledge, exploration, and exploitation of the deep ocean
  • 1.1 Introduction
  • 1.1.1 Natural capital defined
  • 1.1.2 Deep-ocean morphology and abiotic characteristics
  • 1.1.3 Diversity and biomass
  • 1.1.4 The legal framework of the ocean
  • 1.2 Exploration, technical development, and analysis leading to economic benefits of the deep sea
  • 1.2.1 Nineteenth century
  • 1.2.2 Early twentieth century
  • 1.2.3 1920s and 1930s
  • 1.2.4 1940s to 1960
  • 1.2.5 1960s
  • 1.2.6 1970s
  • 1.2.7 1980s
  • 1.2.8 1990s
  • 1.2.9 2000s
  • 1.2.10 2010s
  • 1.3 And the future?
  • Acknowledgements
  • References
  • CHAPTER 2: A primer on the economics of natural capital and its relevance to deep-sea exploitation and conservation
  • 2.1 Introduction
  • 2.2 Human perceptions and uses of the deep sea
  • 2.3 Natural capital and ecosystem services: stocks and flows
  • 2.4 Qualitative examples of natural capital accounting for the deep sea
  • 2.4.1 Natural capital of the open-oceans biome
  • 2.4.2 Natural capital of the world capture fishery stocks
  • 2.4.3 Natural capital of the ocean twilight zone's fish stocks
  • 2.4.4 Natural capital of the ocean's biological carbon pump
  • 2.4.5 Natural capital of deep-seabed minerals
  • 2.4.6 Natural capital of the cultural aspects of the deep sea
  • 2.4.7 Natural capital of the passive use of deep-sea hydrothermal vents
  • 2.5 Emerging institutions for deep-sea governance
  • 2.6 Conclusions
  • Acknowledgements
  • References
  • Appendix
  • A1 Theoretical framework for sustainable development
  • A2 Accounting price for global public goods
  • A3 Accounting price for natural capital
  • A3.1 The classical bioeconomic model
  • A3.2 The Fenichel et al. (2018) framework
  • CHAPTER 3: The legal framework for resource management in the deep sea
  • 3.1 Introduction
  • 3.2 National law
  • 3.3 International law
  • 3.3.1 Deep-sea fishing
  • 3.3.2 Pollution
  • 3.3.3 Deep-sea mining
  • 3.3.4 Marine scientific research
  • 3.3.5 Current gaps in the law
  • 3.4 The role of scientists in ocean governance
  • 3.5 Conclusion
  • Acknowledgements
  • References
  • International agreements cited
  • CHAPTER 4: Exploitation of deep-sea fishery resources
  • 4.1 The development of deep-sea fisheries
  • 4.1.2 Deep-sea fishing methods
  • 4.1.3 The footprint of deep-sea fisheries
  • 4.2 Environment and life histories/ energetics of deep-sea demersal fishes
  • 4.3 Impacts of deep-sea fisheries and potential for recovery
  • 4.3.1 Impacts on fish populations
  • 4.3.2 Impacts on habitat
  • 4.3.3 Potential for recovery of fish populations
  • 4.3.4 Recovery of impacted habitat
  • 4.4 Management and stakeholder processes
  • 4.4.1 International debate and negotiations over deep-sea fisheries
  • 4.4.2 Implementation of the resolutions: protection of deep-sea ecosystems and sustainable deep-sea fisheries on the high seas
  • 4.5 The future of deep-sea fisheries
  • Acknowledgements
  • References
  • CHAPTER 5: Deep-sea mining: processes and impacts
  • 5.1 Deep-sea mining
  • 5.2 Seafloor minerals
  • 5.2.1 Abyssal Plains and polymetallic nodules
  • 5.2.2 Seamounts, ridges, and polymetallic crusts
  • 5.2.3 Hydrothermal vents and seafloor massive sulphides
  • 5.3 Fauna living in association with mineral accumulations
  • 5.3.1 Polymetallic nodules
  • 5.3.2 Polymetallic crusts
  • 5.3.3 Hydrothermal vents
  • 5.4 Regulations and jurisdictions
  • 5.5 Practicalities of deep-sea mining
  • 5.6 Environmental impacts of deep-sea mining
  • 5.6.1 Wide-reaching impacts across depths and habitats
  • 5.6.2 Impacts of mining seafloor massive sulphides
  • 5.6.3 Environmental impacts of mining polymetallic nodules
  • 5.6.4 The effects of mining polymetallic crusts
  • 5.7 Cross-ecosystem impacts: degradation and recovery
  • 5.8 Knowledge gaps: a need to deepen understanding
  • 5.9 Environmental management: reducing the impact of deep-ocean mining
  • 5.9.1 Environmental management processes
  • 5.9.2 Environmental management responsibilities
  • 5.10 Conclusions
  • Acknowledgements
  • References
  • CHAPTER 6: The natural capital of offshore oil, gas, and methane hydrates in the World Ocean
  • 6.1 The natural capital of hydrocarbon reserves
  • 6.1.1 Oil and gas reserves in offshore systems
  • 6.1.2 The potential of deep-sea gas hydrate reservoirs
  • 6.2 The ecology of offshorehydrocarbon-associated ecosystems: a brief sketch
  • 6.3 Operational impacts
  • 6.3.1 Physical and chemical impacts on organisms and ecosystems
  • 6.3.2 Long-term and climate impacts
  • 6.4 Best practices for exploitation and management
  • 6.5 Spatial overlap between ecological assets and oil leases creates challenges
  • 6.6 Ecosystem recovery from operational impacts
  • 6.7 Conclusions
  • Acknowledgements
  • References
  • CHAPTER 7: The exploitation of deep-sea biodiversity: components, capacity, and conservation
  • 7.1 Introduction
  • 7.2 Exploitable components of deep-sea biodiversity
  • 7.2.1 Deep-sea biodiversity as inspiration for innovation
  • 7.2.2 'Actual or potential' value
  • 7.3 Capacity: capturing benefits
  • 7.3.1 Benefits
  • 7.3.2 Capturing benefits: the role of science and technology
  • 7.3.3 Conservation
  • 7.4 Conclusion
  • Acknowledgements
  • References
  • CHAPTER 8: The deep ocean's link to culture and global processes: nonextractive value of the deep sea
  • 8.1 Ecosystem services and nonuse values
  • 8.2 A diverse and inspiring dark sea
  • 8.2.1 The deep, dark water
  • 8.2.2 The expanse of marvellous mud
  • 8.2.3 Habitats that break the global mud belt
  • 8.3 Cultural services
  • 8.4 Deep-sea science: exploration and research to understand the past, present, and future earth
  • 8.5 Supporting and regulating services
  • 8.5.1 Primer on deep-ocean flow and function
  • 8.5.2 Nutrients for the shallows that fuel fisheries and oxygenate the atmosphere
  • 8.5.3 A bottom-up view of vents and seeps
  • 8.6 An overlap of use and nonuse
  • 8.7 Current state of valuation of nonuse values in the deep sea
  • 8.8. Summary
  • Acknowledgements
  • References
  • CHAPTER 9: Climate change cumulative impacts on deep-sea ecosystems
  • 9.1 Introduction
  • 9.2 Predicting climate-change impacts: projected changes and species vulnerability
  • 9.2.1 Earth System Model projections and observations at depth
  • 9.2.2 Species sensitivity to change in natural abiotic conditions
  • 9.3 Identifying the drivers and impacts of climate change in deep-sea ecosystems
  • 9.3.1 Export of organic resources at depth
  • 9.3.2 Combination of climate stressors in space and time
  • 9.4 Required monitoring to forecast vulnerability
  • 9.5 Climate policy and the deep sea
  • 9.6 Conclusion
  • Acknowledgements
  • References
  • CHAPTER 10: Space, the final resource
  • 10.1 Introduction
  • 10.2 Organised, deliberate waste disposal
  • 10.2.1 Particulate waste: sewage sludge, dredge spoils, and mining tailings
  • 10.2.2 Marine litter: shipping and commercial fishing sources
  • 10.2.3 Radioactive waste
  • 10.2.4 Chemical and pharmaceutical waste
  • 10.2.5 Munitions
  • 10.3 Inadvertent disposal
  • 10.3.1 Shipwrecks and maritime accidents
  • 10.3.2 Microplastics
  • 10.4 Buffer space
  • 10.4.1 Noise
  • 10.4.2 Heat absorption and transfer and CO2 uptake
  • 10.5 Technology space
  • 10.5.1 Submarine telecommunication cables-connecting the continents
  • 10.5.2 Deep-ocean military and scientific infrastructure
  • 10.6 Conclusion
  • Acknowledgements
  • References
  • CHAPTER 11: A holistic vision for our future deep ocean
  • 11.1 Challenges and possibilities for a healthy ocean
  • 11.2 Cumulative and synergistic interactions
  • 11.3 Advancing science in policy
  • Acknowledgements
  • References
  • Name index
  • Subject index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

36,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen