Introduction to Renewable Biomaterials

First Principles and Concepts
 
 
Wiley (Verlag)
  • erschienen am 8. September 2017
  • |
  • 288 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-118-69859-4 (ISBN)
 
Covers the entire evolutionary spectrum of biomass, from its genetic modification and harvesting, to conversion technologies, life cycle analysis, and its value to the current global economy
This original textbook introduces readers to biomass--a renewable resource derived from forest, agriculture, and organic-based materials--which has attracted significant attention as a sustainable alternative to petrochemicals for large-scale production of fuels, materials, and chemicals. The current renaissance in the manipulation and uses of biomass has been so abrupt and focused, that very few educational textbooks actually cover these topics to any great extent. That's why this interdisciplinary text is a welcome resource for those seeking a better understanding of this new discipline. It combines the underpinning science of biomass with technology applications and sustainability considerations to provide a broad focus to its readers.
Introduction to Renewable Biomaterials: First Principles and Concepts consists of eight chapters on the following topics: fundamental biochemical & biotechnological principles; principles and methodologies controlling plant growth and silviculture; fundamental science and engineering considerations; critical considerations and strategies for harvesting; first principles of pretreatment; conversion technologies; characterization methods and techniques; and life cycle analysis. Each chapter includes a glossary of terms, two to three problem sets, and boxes to highlight novel discoveries and instruments. Chapters also offer questions for further consideration and suggestions for further reading.
* Developed from a successful USDA funded course, run by a partnership of three US universities: BioSUCEED - BioProducts Sustainability, a University Cooperative Center for Excellence in Education
* Covers the entire evolutionary spectrum of biomass, from genetic modification to life cycle analysis
* Presents the key chemistry, biology, technology, and sustainability aspects of biomaterials
* Edited by a highly regarded academic team, with extensive research and teaching experience in the field
Introduction to Renewable Biomaterials: First Principles and Concepts is an ideal text for advanced academics and industry professionals involved with biomass and renewable resources, bioenergy, biorefining, biotechnology, materials science, sustainable chemistry, chemical engineering, crop science and technology, agriculture.
weitere Ausgaben werden ermittelt
About the Editors
Ali S. Ayoub, PhD is an internationally recognized expert in the biopolymer science and engineering field and has successfully developed groundbreaking inventions in areas relevant to polymeric materials and the biorefinery concept. He is a senior scientist in the chemical industry, as well as an adjunct professor and associate graduate faculty member at North Carolina State University. He is associated with the United States Department of Interior and symposiums related to natural polymers within the American Chemical Society.
Lucian A. Lucia, PhD is an Associate Professor in Forest Biomaterials and Chemistry, North Carolina State University and an honorary Professor of Green Chemistry at Qilu University of Technology (China). He was the Principle Investigator for the acclaimed BioSUCCEED educational/research framework (BioProducts Sustainability, a University Cooperative Center for Excellence in Education). He has been elected Fellow to a number of prestigious organizations and is co-Founder and co-Editor of the international journal BioResources.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright [Seite 6]
4 - Contents [Seite 7]
5 - List of Contributors [Seite 15]
6 - Preface [Seite 17]
7 - Chapter 1 Fundamental Biochemical and Biotechnological Principles of Biomass Growth and Use [Seite 19]
7.1 - 1.1 Learning Objectives [Seite 19]
7.2 - 1.2 Comparison of Fossil-Based versus Bio-Based Raw Materials [Seite 20]
7.2.1 - 1.2.1 The Nature of Fossil Raw Materials [Seite 20]
7.2.2 - 1.2.2 Industrial Use [Seite 21]
7.2.2.1 - 1.2.2.1 Energy [Seite 21]
7.2.2.2 - 1.2.2.2 Chemicals [Seite 22]
7.2.3 - 1.2.3 Expectancy of Resources [Seite 26]
7.2.4 - 1.2.4 Green House Gas (GHG) Emission [Seite 26]
7.2.5 - 1.2.5 Regional Pillars of Competitiveness [Seite 27]
7.2.6 - 1.2.6 Questions for Further Consideration [Seite 29]
7.3 - 1.3 The Nature of Bio-Based Raw Materials [Seite 29]
7.3.1 - 1.3.1 Oil Crops [Seite 29]
7.3.2 - 1.3.2 Sugar Crops [Seite 31]
7.3.3 - 1.3.3 Starch Crops [Seite 32]
7.3.4 - 1.3.4 Lignocellulosic Plants [Seite 33]
7.3.5 - 1.3.5 Lignocellulosic Biomass [Seite 34]
7.3.6 - 1.3.6 Algae [Seite 34]
7.3.7 - 1.3.7 Plant Breeding [Seite 35]
7.3.8 - 1.3.8 Basic Transformation Principles [Seite 35]
7.3.8.1 - 1.3.8.1 First Generation [Seite 35]
7.3.8.2 - 1.3.8.2 Second Generation [Seite 36]
7.3.8.3 - 1.3.8.3 Third Generation [Seite 36]
7.3.9 - 1.3.9 Industrial Use [Seite 36]
7.3.9.1 - 1.3.9.1 Energy [Seite 36]
7.3.9.2 - 1.3.9.2 Chemicals [Seite 38]
7.3.9.3 - 1.3.9.3 Biocatalysts [Seite 40]
7.3.9.4 - 1.3.9.4 Pharmaceuticals [Seite 41]
7.3.9.5 - 1.3.9.5 Nutrition [Seite 42]
7.3.9.6 - 1.3.9.6 Polymers [Seite 42]
7.3.10 - 1.3.10 Expectancy of Resources [Seite 44]
7.3.11 - 1.3.11 Green House Gas Emission [Seite 44]
7.3.12 - 1.3.12 Regional Pillars of Competitiveness [Seite 45]
7.3.13 - 1.3.13 Questions for Further Consideration [Seite 47]
7.4 - 1.4 General Considerations Surrounding Bio-Based Raw Materials [Seite 47]
7.4.1 - 1.4.1 Economical Challenges [Seite 47]
7.4.2 - 1.4.2 Feedstock Demand Challenges [Seite 48]
7.4.3 - 1.4.3 Ecological Considerations [Seite 49]
7.4.4 - 1.4.4 Societal Considerations [Seite 49]
7.4.4.1 - 1.4.4.1 Food Security [Seite 49]
7.4.4.2 - 1.4.4.2 Public Acceptance [Seite 50]
7.5 - 1.5 Research Advances Made Recently [Seite 50]
7.5.1 - 1.5.1 First-Generation Processes and Products [Seite 50]
7.5.2 - 1.5.2 Second-Generation Processes and Products [Seite 51]
7.5.3 - 1.5.3 Third-Generation Processes and Products [Seite 51]
7.6 - 1.6 Prominent Scientists Working in this Arena [Seite 52]
7.7 - 1.7 Summary [Seite 53]
7.8 - 1.8 Study Problems [Seite 53]
7.9 - 1.9 Key References [Seite 54]
7.10 - References [Seite 54]
8 - Chapter 2 Fundamental Science and Applications for Biomaterials [Seite 57]
8.1 - 2.1 Introduction [Seite 57]
8.2 - 2.2 What are the Biopolymers that Encompass the Structure and Function of Lignocellulosics? [Seite 57]
8.2.1 - 2.2.1 Cellulose [Seite 58]
8.2.2 - 2.2.2 Heteropolysaccharides [Seite 61]
8.2.3 - 2.2.3 Lignin [Seite 63]
8.2.4 - 2.2.4 The Discovery of Cellulose and Lignin [Seite 65]
8.3 - 2.3 Chemical Reactivity of Cellulose, Heteropolysaccharides, and Lignin [Seite 66]
8.3.1 - 2.3.1 Cellulose Reactivity [Seite 66]
8.3.1.1 - 2.3.1.1 Reactivity Measurements [Seite 68]
8.3.1.2 - 2.3.1.2 Dissolving-Grade Pulps [Seite 69]
8.3.1.3 - 2.3.1.3 Converting Paper-Grade Pulps into Dissolving-Grade Pulps [Seite 69]
8.3.2 - 2.3.2 Hemicellulose Reactivity [Seite 69]
8.3.2.1 - 2.3.2.1 Structural Characterization of Hemicellulose [Seite 70]
8.3.3 - 2.3.3 Lignin Reactivity [Seite 71]
8.4 - 2.4 Composite as a Unique Application for Renewable Materials [Seite 71]
8.4.1 - 2.4.1 Rationale and Significance [Seite 72]
8.4.2 - 2.4.2 Starch-Based Materials [Seite 73]
8.4.3 - 2.4.3 Starch-Based Plastics [Seite 74]
8.4.3.1 - 2.4.3.1 Novamont [Seite 75]
8.4.3.2 - 2.4.3.2 Cereplast [Seite 76]
8.4.3.3 - 2.4.3.3 Ecobras [Seite 76]
8.4.3.4 - 2.4.3.4 Biotec [Seite 76]
8.4.3.5 - 2.4.3.5 Plantic [Seite 77]
8.4.3.6 - 2.4.3.6 Biolice [Seite 77]
8.4.3.7 - 2.4.3.7 KTM Industries [Seite 77]
8.4.3.8 - 2.4.3.8 Cerestech, Inc. [Seite 77]
8.4.3.9 - 2.4.3.9 Teknor Apex [Seite 78]
8.5 - 2.5 Question for Further Consideration [Seite 78]
8.6 - References [Seite 78]
9 - Chapter 3 Conversion Technologies [Seite 81]
9.1 - 3.1 Learning Objectives [Seite 81]
9.2 - 3.2 Energy Scenario at Global Level [Seite 81]
9.2.1 - 3.2.1 Why Our Energy is so Important? [Seite 81]
9.2.2 - 3.2.2 Black Treasure Chest [Seite 82]
9.2.3 - 3.2.3 Conventional Fossil Resources and their Alternatives [Seite 84]
9.2.3.1 - 3.2.3.1 Light Crude Oil (Conventional Oil) [Seite 84]
9.2.3.2 - 3.2.3.2 Coal [Seite 84]
9.2.3.3 - 3.2.3.3 Natural Gas [Seite 84]
9.2.3.4 - 3.2.3.4 Shale Oil (Tight Oil) [Seite 85]
9.2.3.5 - 3.2.3.5 Oil Sands, Bitumen Extra Heavy Oil [Seite 85]
9.2.3.6 - 3.2.3.6 Shale Gas [Seite 85]
9.2.3.7 - 3.2.3.7 Methane (Gas) Hydrates [Seite 85]
9.2.3.8 - 3.2.3.8 EROI - How Much Fuel in Fuel? [Seite 86]
9.2.3.9 - 3.2.3.9 Environmental Effects of Fossil Resource Utilisation [Seite 87]
9.3 - 3.3 Biomass [Seite 89]
9.3.1 - 3.3.1 Renewable Energy and Renewable Carbon [Seite 89]
9.3.2 - 3.3.2 Why Different Types of Biomass have the Properties they Have? [Seite 91]
9.4 - 3.4 Biomass Conversion Methods [Seite 93]
9.4.1 - 3.4.1 Conversion of Biochemical Energy Perspective [Seite 93]
9.4.2 - 3.4.2 Overview of Biomass Conversion Technologies [Seite 96]
9.4.3 - 3.4.3 Thermochemical Conversion of Biomass [Seite 96]
9.4.4 - 3.4.4 Biomass Combustion [Seite 98]
9.4.5 - 3.4.5 Gasification [Seite 99]
9.4.6 - 3.4.6 Pyrolysis [Seite 102]
9.4.7 - 3.4.7 Conversion of Oily Feedstocks [Seite 104]
9.4.8 - 3.4.8 Biochemical Conversion of Biomass [Seite 106]
9.4.8.1 - 3.4.8.1 Aerobic and Anaerobic Metabolisms [Seite 106]
9.4.8.2 - 3.4.8.2 Central Metabolic Pathway under Anaerobic Conditions [Seite 107]
9.4.9 - 3.4.9 Harvesting Energy from Biochemical Processes [Seite 109]
9.4.9.1 - 3.4.9.1 Ethanol Fermentation [Seite 109]
9.4.9.2 - 3.4.9.2 ABE Fermentation [Seite 110]
9.4.9.3 - 3.4.9.3 Biohydrogen [Seite 111]
9.4.9.4 - 3.4.9.4 Biomethane [Seite 112]
9.5 - 3.5 Metrics to Assist the Transition Towards Sustainable Production of Bioenergy and Biomaterials [Seite 113]
9.5.1 - 3.5.1 EROI - Primary Metrics of Energy Carrier Efficiency [Seite 113]
9.5.2 - 3.5.2 LCA - Sustainability Determinant [Seite 114]
9.5.3 - 3.5.3 Environmental Assessment of Bioenergy Production Processes [Seite 115]
9.5.3.1 - 3.5.3.1 Impacts Related to Land-Use Change [Seite 115]
9.5.3.2 - 3.5.3.2 Impacts of Feedstock Cultivation [Seite 116]
9.5.3.3 - 3.5.3.3 Impacts of Conversion Process [Seite 116]
9.5.3.4 - 3.5.3.4 Impacts of Product Use [Seite 116]
9.5.4 - 3.5.4 Sustainability Metrics in Biomass and Bioenergy Policies [Seite 117]
9.5.5 - 3.5.5 Renewable and Non-Renewable Carbon - Taxation and Subsidies [Seite 117]
9.6 - 3.6 Summary [Seite 120]
9.7 - 3.7 Key References [Seite 120]
9.8 - References [Seite 121]
10 - Chapter 4 Characterization Methods and Techniques [Seite 125]
10.1 - 4.1 Philosophy Statement [Seite 125]
10.2 - 4.2 Understanding the Characteristics of Biomass [Seite 125]
10.3 - 4.3 Taking Precautions Prior to Setting Up Experiments for Biomass Analysis [Seite 126]
10.4 - 4.4 Classifying Biomass Sizes for Proper Analysis [Seite 127]
10.5 - 4.5 Moisture Content of Biomass and Importance of Drying Samples Prior to Analysis [Seite 128]
10.6 - 4.6 When the Carbon is Burned [Seite 129]
10.7 - 4.7 Structural Cell Wall Analysis, What To Look For [Seite 130]
10.8 - 4.8 Hydrolyzing Biomass and Determining Its Composition [Seite 132]
10.8.1 - 4.8.1 Analyzing Filtrate by HPLC for Monosaccharide Contents [Seite 133]
10.8.2 - 4.8.2 Choosing the HPLC Column and Its Operating Conditions [Seite 133]
10.9 - 4.9 Determining Cell Wall Structures Through Spectroscopy and Scattering [Seite 134]
10.9.1 - 4.9.1 Probing the Chemical Structure of Biomass [Seite 134]
10.9.1.1 - 4.9.1.1 X-Ray Diffraction (XRD) [Seite 136]
10.9.1.2 - 4.9.1.2 Cross-polarization/Magic Angle Spinning (CP/MAS) 13C NMR [Seite 137]
10.9.1.3 - 4.9.1.3 Fourier-Transform Infrared Spectroscopy (FTIR) [Seite 139]
10.9.1.4 - 4.9.1.4 Raman Analysis [Seite 140]
10.10 - 4.10 Examining the Size of the Biopolymers: Molecular Weight Analysis [Seite 141]
10.11 - 4.11 Intricacies of Understanding Lignin Structure [Seite 143]
10.11.1 - 4.11.1 13C NMR [Seite 144]
10.11.2 - 4.11.2 31P NMR [Seite 144]
10.11.3 - 4.11.3 2D HSQC [Seite 146]
10.11.4 - 4.11.4 Methoxyl Content Determination [Seite 150]
10.11.4.1 - 4.11.4.1 1H NMR [Seite 150]
10.11.4.2 - 4.11.4.2 Hydriodic Acid [Seite 150]
10.11.4.3 - 4.11.4.3 Direct Methanol [Seite 150]
10.12 - 4.12 Questions for Further Consideration [Seite 150]
10.13 - References [Seite 150]
11 - Chapter 5 Introduction to Life-Cycle Assessment and Decision Making Applied to Forest Biomaterials [Seite 159]
11.1 - 5.1 Introduction [Seite 159]
11.1.1 - 5.1.1 What is LCA? [Seite 159]
11.1.1.1 - 5.1.1.1 History [Seite 160]
11.1.2 - 5.1.2 LCA for Decision Making [Seite 160]
11.1.2.1 - 5.1.2.1 Eco-labels [Seite 161]
11.2 - 5.2 LCA Components Overview [Seite 162]
11.2.1 - 5.2.1 Goal and Scope Definition [Seite 163]
11.2.2 - 5.2.2 Inventory Analysis [Seite 163]
11.2.3 - 5.2.3 Life-Cycle Impact Assessment [Seite 164]
11.2.4 - 5.2.4 Interpretation [Seite 164]
11.3 - 5.3 Life-Cycle Assessment Steps [Seite 164]
11.3.1 - 5.3.1 Goal, Scope, System Boundaries [Seite 164]
11.3.1.1 - 5.3.1.1 Goal Definition [Seite 164]
11.3.1.2 - 5.3.1.2 Scope Definition [Seite 165]
11.3.1.3 - 5.3.1.3 Functional Unit [Seite 166]
11.3.1.4 - 5.3.1.4 Cutoff Criteria [Seite 166]
11.3.1.5 - 5.3.1.5 Problems Set - Goal and Scope Definition [Seite 166]
11.3.2 - 5.3.2 Life-Cycle Inventory [Seite 168]
11.3.2.1 - 5.3.2.1 Preparation of Data Collection Based on Goal and Scope [Seite 169]
11.3.2.2 - 5.3.2.2 Data Collection [Seite 170]
11.3.2.3 - 5.3.2.3 Data Quality [Seite 173]
11.3.2.4 - 5.3.2.4 Coproduct Treatment - Allocation [Seite 175]
11.3.2.5 - 5.3.2.5 Relating Data to the Unit Process [Seite 176]
11.3.2.6 - 5.3.2.6 Relating Data to the Functional Unit [Seite 177]
11.3.2.7 - 5.3.2.7 Data Aggregation [Seite 177]
11.3.2.8 - 5.3.2.8 LCI Data Interpretation [Seite 177]
11.3.2.9 - 5.3.2.9 Problems Set - Life-Cycle Inventory [Seite 178]
11.3.2.10 - 5.3.2.10 Mandatory Elements [Seite 184]
11.3.2.11 - 5.3.2.11 Classification [Seite 186]
11.3.2.12 - 5.3.2.12 Characterization [Seite 187]
11.3.2.13 - 5.3.2.13 Optional Elements [Seite 188]
11.3.2.14 - 5.3.2.14 Life Cycle Impact Assessment Interpretation [Seite 191]
11.3.2.15 - 5.3.2.15 Problems Set -Life-Cycle Impact Assessment [Seite 191]
11.4 - 5.4 LCA Tools for Forest Biomaterials [Seite 195]
11.4.1 - 5.4.1 FICAT [Seite 195]
11.4.2 - 5.4.2 GREET Model [Seite 196]
11.5 - References [Seite 196]
12 - Chapter 6 First Principles of Pretreatment and Cracking Biomass to Fundamental Building Blocks [Seite 199]
12.1 - 6.1 Introduction [Seite 199]
12.1.1 - 6.1.1 What Is Lignocellulosic Material? [Seite 201]
12.1.1.1 - 6.1.1.1 Lignocellulosic Materials [Seite 201]
12.1.1.2 - 6.1.1.2 Cellulose [Seite 201]
12.1.1.3 - 6.1.1.3 Hemicellulose [Seite 203]
12.1.1.4 - 6.1.1.4 Lignin [Seite 205]
12.2 - 6.2 What Difference Should Be Considered Between Wood and Agricultural Biomass? [Seite 207]
12.2.1 - 6.2.1 Intrapolymeric Bonds [Seite 208]
12.2.2 - 6.2.2 Polymeric Inter Bonds [Seite 208]
12.2.3 - 6.2.3 Functional Groups and Chemical Characteristics of Lignocellulosic Biomass Components [Seite 209]
12.2.4 - 6.2.4 Aromatic Ring [Seite 209]
12.2.5 - 6.2.5 Hydroxyl Group [Seite 210]
12.2.6 - 6.2.6 Ether Bond [Seite 210]
12.2.7 - 6.2.7 Ester Bond [Seite 210]
12.2.8 - 6.2.8 Hydrogen Bond [Seite 212]
12.3 - 6.3 Define Pretreatment [Seite 212]
12.3.1 - 6.3.1 What Is the Purpose of Pretreatment? [Seite 212]
12.4 - 6.4 Steps of Production of Cellulosic Ethanol [Seite 213]
12.4.1 - 6.4.1 Pretreatment [Seite 213]
12.4.2 - 6.4.2 Hydrolysis [Seite 213]
12.4.3 - 6.4.3 What Are the Inhibitors for Biomass Carbohydrate Hydrolysis? [Seite 213]
12.4.4 - 6.4.4 Fermentation [Seite 214]
12.4.5 - 6.4.5 Formation of Fermentation Inhibitors [Seite 214]
12.4.6 - 6.4.6 Sugars Degradation Products [Seite 214]
12.4.7 - 6.4.7 Lignin Degradation Products [Seite 215]
12.4.8 - 6.4.8 Acetic Acid [Seite 215]
12.4.9 - 6.4.9 Inhibitory Extractives [Seite 215]
12.4.10 - 6.4.10 Heavy Metal Ions [Seite 215]
12.4.11 - 6.4.11 Separation [Seite 215]
12.5 - 6.5 What Are the Key Considerations for Making a Successful Pretreatment Technology? [Seite 216]
12.5.1 - 6.5.1 Effect of Pretreatment on Hydrolysis Process [Seite 217]
12.6 - 6.6 What Are the General Methods Used in Pretreatment? [Seite 217]
12.7 - 6.7 What Is Currently Being Done and What Are the Advances? [Seite 218]
12.7.1 - 6.7.1 Steam Explosion [Seite 219]
12.7.2 - 6.7.2 Hydrothermolysis [Seite 222]
12.7.3 - 6.7.3 High-Energy Irradiations [Seite 223]
12.7.4 - 6.7.4 Acid Pretreatment [Seite 225]
12.7.5 - 6.7.5 Mechanism of Acid Hydrolysis [Seite 226]
12.7.6 - 6.7.6 Alkaline Pretreatment [Seite 226]
12.7.7 - 6.7.7 Ammonia Pretreatment [Seite 228]
12.7.8 - 6.7.8 Ammonia Recycle Percolation (ARP) [Seite 228]
12.7.9 - 6.7.9 Ammonia Fiber Expansion (AFEX) [Seite 228]
12.7.10 - 6.7.10 Defects of AFEX Process [Seite 228]
12.7.11 - 6.7.11 Enzymatic Pretreatment [Seite 228]
12.7.12 - 6.7.12 Advantages of Biological Pretreatment [Seite 229]
12.7.13 - 6.7.13 Defects of Biological Pretreatment [Seite 229]
12.8 - 6.8 Summary [Seite 229]
12.9 - References [Seite 230]
13 - Chapter 7 Green Route to Prepare Renewable Polyesters from Monomers: Enzymatic Polymerization [Seite 237]
13.1 - 7.1 Philosophic Statement [Seite 237]
13.2 - 7.2 Introduction [Seite 237]
13.3 - 7.3 Lipase-Catalyzed Ring-Opening Polymerizations of Cyclic Monomeric Esters (Lactones and Lactides) [Seite 238]
13.4 - 7.4 Lipase-Catalyzed Polycondensation [Seite 241]
13.4.1 - 7.4.1 Dicarboxylic Acid or Its Esters with Diols [Seite 242]
13.4.2 - 7.4.2 Dicarboxylic Acid or Its Esters with Polyols [Seite 243]
13.4.3 - 7.4.3 Polyesters from Fatty Acid-Based Monomers [Seite 244]
13.4.3.1 - 7.4.3.1 Lipase-Catalyzed Polycondensation of &rmalpha [Seite 244]
13.4.3.2 - 7.4.3.2 Lipase-Catalyzed Polycondensation of Hydroxy Fatty Acids [Seite 245]
13.4.3.3 - 7.4.3.3 Fatty Acids as Side Chains to Modify Functional Polyesters [Seite 246]
13.4.4 - 7.4.4 Polyester Using Furan as Building Block [Seite 247]
13.4.5 - 7.4.5 Conclusions and Remarks [Seite 248]
13.4.6 - 7.4.6 Questions for Further Consideration [Seite 248]
13.5 - List of Abbreviations [Seite 248]
13.6 - References [Seite 249]
14 - Chapter 8 Oil-Based and Bio-Derived Thermoplastic Polymer Blends and Composites [Seite 257]
14.1 - 8.1 Introduction [Seite 257]
14.2 - 8.2 Oil-Based and Bio-Derived Thermoplastic Polymer Blends [Seite 258]
14.2.1 - 8.2.1 Comparison Between Oil-Based and Bio-Derived Thermoplastic Polymers [Seite 258]
14.2.2 - 8.2.2 Thermoplastics Blends [Seite 264]
14.3 - 8.3 Thermoplastic Composites with Natural Fillers [Seite 270]
14.3.1 - 8.3.1 Wood-Plastic Composites [Seite 272]
14.3.2 - 8.3.2 Waste Paper as Filler in Thermoplastic Composites [Seite 278]
14.4 - 8.4 Conclusion [Seite 281]
14.5 - 8.5 Questions for Further Consideration [Seite 282]
14.6 - References [Seite 282]
15 - Index [Seite 287]
16 - EULA [Seite 289]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

74,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen