Advances in Atomic, Molecular, and Optical Physics

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 31. Mai 2016
  • |
  • 444 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-805244-0 (ISBN)
 

Advances in Atomic, Molecular, and Optical Physics provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many problems, both old and new.

Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by distinguished experts that contain relevant review material and detailed descriptions of important developments in the field.


  • Presents the work of international experts in the field
  • Comprehensive articles compile recent developments in a field that is experiencing rapid growth, with new experimental and theoretical techniques emerging
  • Ideal for users interested in optics, excitons, plasmas, and thermodynamics
  • Topics covered include atmospheric science, astrophysics, surface physics, and laser physics, amongst others
1049-250X
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 54,57 MB
978-0-12-805244-0 (9780128052440)
0128052449 (0128052449)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Atomic, Molecular, and Optical Physics
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Spectroscopy of Natural and Artificial Atoms in Magnetic Fields
  • 1. Introduction
  • 2. Zeeman Effects and g-Factor
  • 2.1. Linear Zeeman
  • 2.2. Diamagnetic Corrections: Second-Order Zeeman Effect
  • 2.3. g-Factors
  • 3. Hyperfine Structure
  • 3.1. Hyperfine Constants
  • 3.2. Dipole Constant
  • 3.2.1. QED Corrections
  • 3.2.2. Proton and Nuclear Structures
  • 3.2.2.1. Zemach Radius
  • 3.2.2.2. Hyperfine Anomaly
  • 3.3. Quadrupole and Octupole Constants
  • 4. Simple Solid Systems: Artificial Atoms
  • 4.1. Vacancies and Spin Hamiltonian
  • 4.2. QDs and Fock-Darwin Hamiltonian
  • 5. Magnetic Field Spectra
  • 5.1. Magnetic Energies
  • 5.2. Simple Exotic Atom Spectra
  • 5.2.1. Muonium
  • 5.2.2. Positronium
  • 5.3. QD Spectra
  • 5.4. NV- Diamond Vacancy Spectra
  • 5.5. Paschen-Back Spectra
  • 5.6. Diamagnetism
  • 5.7. Rydberg Spectra
  • 6. g-Factor Measurements
  • 6.1. Hydrogen and Hydrogen-Like Ions for QED Tests
  • 6.2. Alkali Atoms
  • 6.3. Alkali-Earth Atoms
  • 7. Hyperfine Structure Measurements
  • 7.1. Hyperfine Structures in Alkali Atoms
  • 7.2. Electronic Atomic Wavefunction and Quantum Number Scaling
  • 7.3. QED Tests
  • 7.3.1. Hydrogen/Deuterium
  • 7.3.2. Positronium
  • 7.3.3. Muonium
  • 7.4. Proton/Nuclear Structure
  • 7.4.1. Zemach Radius
  • 7.4.2. Hyperfine Anomaly
  • 7.4.3. Octupole
  • 7.5. Searching for New Physics Using Atoms
  • 8. Measurements of g-Factors and Hyperfine Structure in Artificial Atoms
  • 8.1. Vacancies
  • 8.1.1. 4H-SiC
  • 8.1.2. NV- Diamond Vacancy
  • 8.2. Semiconductor QDs
  • 9. Conclusions
  • Acknowledgments
  • References
  • Chapter Two: Ultracold Hybrid Atom-Ion Systems
  • 1. Introduction
  • 2. Atom-Ion Interactions
  • 2.1. Homonuclear Case
  • 2.2. Heteronuclear Case
  • 3. Scattering Processes
  • 3.1. Resonant Processes
  • 3.1.1. Theory
  • 3.1.2. Energy Regimes and Approximations
  • 3.2. Nonresonant Processes
  • 4. Transport Properties
  • 4.1. Diffusion
  • 4.2. Mobility
  • 4.3. Hole Mobility
  • 5. Tuning Interactions: Hyperfine and Zeeman Interactions
  • 5.1. Multichannel Scattering
  • 5.2. Identical Nuclei
  • 6. Isotopic Effects
  • 6.1. Theory
  • 6.2. Results for a Few Examples
  • 6.3. Tuning Scattering with Magnetic Fields
  • 7. Charges in a BEC
  • 7.1. Ion in a BEC
  • 7.2. Rydberg Electron in a BEC
  • 8. Conclusions
  • Acknowledgments
  • References
  • Chapter Three: Spiking Systematics in Some CO2 Laser Models
  • 1. Introduction
  • 2. Computation of Stability Charts
  • 3. Spiking in Selected CO2 Laser Models
  • 3.1. First Experimental Observation of Laser Chaos
  • 3.2. CO2 with Feedback, Three-Dimensional Model
  • 3.3. State of the Art: Six-Dimensional Model
  • 3.3.1. Genesis of the Six-Dimensional Model
  • 3.3.2. Stability Charts
  • 3.3.3. Arborescent Structures Generated by Spikes Transitions
  • 3.4. Delayed Feedback, Infinite Dimension
  • 3.4.1. The General Model
  • 3.4.2. Bifurcations by Waveform Deformation
  • 3.4.3. Regularities in the t x r and t x B Control Planes
  • 4. Conclusions and Outlook
  • Acknowledgments
  • References
  • Chapter Four: Infrared Remote Sensing with Meteorological Satellites
  • 1. Evolution of Satellite Remote Sensing
  • 1.1. Starting with the Polar-Orbiting Satellites
  • 1.1.1. The First Meteorological Satellite Experiment
  • 1.1.2. Pictures: Day (Reflected Solar Visible) and Night (Earth-Emitted Infrared)
  • 1.1.3. Global Coverage with Polar Orbits
  • 1.1.4. Measuring the Vertical Structure of the Atmosphere (Sounding)
  • 1.1.5. Operational Global Imaging and Sounding
  • 1.2. Introducing the Geostationary Perspective
  • 1.2.1. Visible Movie Loops of the Earth and the Atmosphere
  • 1.2.2. Operational Half Hourly Earth Disk Visible and IR Images
  • 1.2.3. Adding Spectral Bands
  • 1.2.4. Adding the Sounding Capability
  • 1.2.5. Working Toward Small-Scale (Mesoscale) Observations
  • 1.3. Evolving into the Future
  • 2. Earth-Emitted Infrared Spectra
  • 2.1. Atmospheric Absorption and Emission of Thermal Radiation
  • 2.1.1. Absorption by the Triatomic Molecules in the Atmosphere
  • 2.1.2. Spectral Separation of the Solar and Earth-Emitted Radiation
  • 2.2. Atmospheric Absorption Bands in the Infrared Spectrum
  • 2.2.1. Vibrational Absorption Bands with Finer Rotational Absorption Lines Superimposed
  • 2.3. Detecting Infrared Radiation
  • 3. IR Radiative Transfer in the Atmosphere
  • 3.1. In Clear Skies
  • 3.1.1. CO2 Concentration Assumed to Be Largely Uniform
  • 3.1.2. CO2 Line Broadening Enables Profile Retrieval
  • 3.1.3. Retrieval of Highly Variable H2O Found in the Transmittance
  • 3.1.4. No Unique Solution, Boundary Conditions Needed
  • 3.2. In Cloudy Skies
  • 3.2.1. Retrieving Cloud Top Properties Requires Multispectral Measurements
  • 4. High Spectral Resolution IR Measurements Improving Physics Theory
  • 4.1. Introduction
  • 4.1.1. Looking Up from the Ground
  • 4.1.2. Looking Down from High Altitude Aircraft
  • 4.2. Theory and Experiment-Atmospheric Water Vapor Absorption
  • 4.2.1. Water Vapor Absorption Models
  • 4.2.2. Water Vapor Continuum Improvement
  • 4.2.3. Adding Data from the Polar-Orbiting Satellites
  • 4.2.4. Line Mixing in Carbon Dioxide Absorption Models
  • 4.3. Summary
  • 5. Broadband Spectral Bands and Their Application
  • 5.1. Visible Band
  • 5.2. Infrared Bands
  • 5.2.1. 3.9 µm Band Receives Thermal Emission and Reflected Solar Contributions
  • 5.2.2. 6.7 µm Band Shows the Water Vapor Swirls in the Troposphere
  • 5.2.3. 9.6 µm Band Reveals Stratospheric Ozone
  • 5.2.4. 11.0 µm Band Sees the Earth Surface in Clear Skies
  • 5.2.5. 12.0 µm Band Is Moisture-Sensitive Part of Split Window
  • 5.2.6. 13.3 µm Band Helps with Cloud Heights
  • 6. Remote Sensing from High Spectral Resolution IR Measurements
  • 6.1. Examples of Applications with High Spectral Resolution Infrared Data
  • 6.1.1. High Spectral Resolution IR Measurements Reveal More Vertical Structure in Moisture
  • 6.1.2. Microchannels in the Infrared Window Avoid Moisture Absorption and See the Boundary Layer
  • 6.1.3. Cloud-Influenced Spectra Show Cloud Phase and Height
  • 6.1.4. Dust- and Ash-Influenced Spectra Reveal Location and Height
  • 7. Conclusions
  • Glossary
  • References
  • Chapter Five: Experiments with Dense Low-Energy Positrons and Positronium
  • 1. Introduction
  • 2. Making Many Positrons
  • 3. Examples of What Has Been Done with Many Positrons
  • 4. What Might Be Interesting to Try Next?
  • 5. Conclusion
  • Acknowledgments
  • References
  • Chapter Six: Time-Dependent Close-Coupling Calculations for Ion-Impact Ionization of Atoms and Molecules
  • 1. Introduction
  • 2. Ion-Impact Ionization
  • 2.1. TDCC-3D for Atoms
  • 2.2. TDCC-6D for Atoms
  • 2.3. TDCC-3D for Molecules
  • 2.4. TDCC-6D for Molecules
  • 3. Results
  • 3.1. Proton Impact Ionization of He
  • 3.2. Alpha Particle Impact Ionization of He
  • 3.3. C6+ Impact Ionization of He
  • 3.4. O8+ Impact Ionization of Li
  • 3.5. F9+ Impact Ionization of He
  • 3.6. U92+ Impact Ionization of He
  • 3.7. Proton Impact Ionization of H2
  • 3.8. Antiproton Impact Ionization of He
  • 3.9. Antiproton Impact Ionization of H, He, and Li
  • 3.10. Antiproton Impact Ionization of H2+ and H2
  • 3.11. Neutron Impact Ionization of He
  • 4. Summary
  • Acknowledgments
  • References
  • Chapter Seven: Quantum and Nonlinear Optics in Strongly Interacting Atomic Ensembles
  • 1. Introduction
  • 1.1. Cold Rydberg gases
  • 1.2. EIT with Rydberg atoms
  • 2. Classical Nonlinear Optics
  • 2.1. Optical Nonlinearities
  • 2.2. Nonlinear Light Propagation
  • 2.2.1. Dissipative Effects
  • 2.2.2. Dispersive Effects
  • 3. Quantum Nonlinear Optics
  • 3.1. Dissipative Quantum Nonlinearity
  • 3.1.1. Preparation of Nonclassical States of Light
  • 3.1.2. All-Optical Switching
  • 3.2. Dispersive Quantum Nonlinearity
  • 3.2.1. Photonic Molecules
  • 3.2.2. Two-Photon Phase Gate
  • 4. Summary and Outlook
  • Acknowledgments
  • References
  • Chapter Eight: Spin-Exchange-Pumped NMR Gyros
  • 1. Introduction
  • 2. NMR Using Hyperpolarized Gases
  • 2.1. Precession of Nuclei due to Magnetic Fields and Rotations
  • 2.2. A Minimal Spin-Exchange NMRG
  • 2.3. Spin-Exchange Optical Pumping
  • 2.4. Spin Relaxation of Polarized Noble Gases
  • 2.5. Bloch Equations for Spin-Exchange-Pumped NMR
  • 3. NMR Oscillator Basics
  • 4. Detection of NMR Precession Using In Situ Magnetometry
  • 5. Finite Gain Feedback Effects: Scale Factor and Bandwidth
  • 6. Noise
  • 7. Dual-Species Operation
  • 7.1. Systematic Errors
  • 7.1.1. Differential Alkali Field
  • 7.1.2. Quadrupole Shifts
  • 7.1.3. Offset Bias
  • 7.1.4. Bias Instability Compensation
  • 8. The Northrop Grumman Gyro
  • 9. Outlook
  • Acknowledgments
  • Appendix
  • A.1. RbXe Spin-Exchange Rates
  • References
  • Index
  • Contents of Volumes in This Serial
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

203,49 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok