Bioceramics and Biocomposites

From Research to Clinical Practice
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 26. März 2019
  • |
  • 400 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-37213-4 (ISBN)
 

Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites

Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures.

Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician's attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more.

  • Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products
  • Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches
  • Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures
  • Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration
  • Delineates essential requirements for resorbable bioceramics
  • Discusses clinical results obtained in dental and orthopedic applications

Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.



Iulian Antoniac, PhD, is a materials science engineer working in the field of biomaterials and medical devices. He is the leader of the Biomaterials Group from Faculty Materials Science and Engineering, University Politehnica of Bucharest. He is President of the Romanian Society for Biomaterials (SRB) and Past-president and member of the Executive Committee of International Society for Ceramics in Medicine (ISCM).

1. Auflage
  • Englisch
  • Somerset
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 28,97 MB
978-1-119-37213-4 (9781119372134)
weitere Ausgaben werden ermittelt
Iulian Antoniac, PhD, is a materials science engineer working in the field of biomaterials and medical devices. He is the leader of the Biomaterials Group from Faculty Materials Science and Engineering, University Politehnica of Bucharest. He is President of the Romanian Society for Biomaterials (SRB) and Past-president and member of the Executive Committee of International Society for Ceramics in Medicine (ISCM).
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Chapter 1 Multifunctionalized Ferri-liposomes for Hyperthermia Induced Glioma Targeting and Brain Drug Delivery
  • 1.1 Introduction
  • 1.1.1 Blood-brain Barrier
  • 1.1.1.1 What is the Blood-brain Barrier (BBB)?
  • 1.1.1.2 The BBB Formation and Composition
  • 1.1.1.3 Endothelial Cell and Tight Junctions
  • 1.1.1.4 Astrocytes
  • 1.1.1.5 Glioma
  • 1.1.2 New Strategies for Measuring Drug Transport Across the BBB
  • 1.2 Liposome
  • 1.2.1 Introduction
  • 1.2.2 Functionalization of Liposomes
  • 1.2.2.1 PEGylation
  • 1.2.2.2 Ligand-mediated Liposome Targeting
  • 1.2.2.3 Cell-penetrating Peptide (CPP) Modification
  • 1.2.3 Physiologically Modified Liposomes
  • 1.2.3.1 PH-sensitive Liposome
  • 1.2.3.2 Thermosensitive Liposomes
  • 1.2.4 Liposome in Combinational Therapies
  • 1.2.4.1 CPP and Antibody Co-delivery System
  • 1.2.4.2 Superparamagnetic Iron Oxide Nanoparticles-Induced Hyperthermia Treatment
  • 1.3 Experimental
  • 1.3.1 In Vitro BBB Model Set Up
  • 1.3.2 Immunostaining and Confocal Imaging
  • 1.4 Liposome Synthesis
  • 1.4.1 Material Characterization
  • 1.4.2 DOX Release and Loading Efficiency
  • 1.4.3 Liposome Permeability Study
  • References
  • Chapter 2 Biofabrication Techniques for Ceramics and Composite Bone Scaffolds
  • 2.1 Introduction
  • 2.2 Scaffolds
  • 2.2.1 Materials
  • 2.3 Manufacturing Processes
  • 2.3.1 Extrusion-based Processes
  • 2.3.2 Vat-photopolymerization Processes
  • 2.3.3 Powder Bed Fusion Processes
  • 2.3.4 Inkjet Printing Processes
  • 2.4 Conclusion
  • References
  • Chapter 3 Developments in Hydrogel-based Scaffolds and Bioceramics for Bone Regeneration
  • 3.1 Introduction
  • 3.2 Directions in the Design of Hydrogels for Bone Regeneration
  • 3.2.1 On the Preparation of Bioinspired and Biomimetic Hydrogels
  • 3.2.2 Biofunctionalization of Non-adhesive Macromolecules with Cell-adhesive Peptides or Other Bioactive Molecules
  • 3.2.3 Engineering of Synthetic Hydrogels with Bioactive or Biodegradable Sites
  • 3.2.4 Nanoparticle-loaded Fibrous Hydrogels for Bone Regeneration
  • 3.2.5 Biomineralization and Hydrogels Bearing Negatively Charged Groups
  • 3.2.5.1 Polymers Containing Acidic Functional Groups
  • 3.2.5.2 Phosphorus-containing Polymers Enhance Mineralization
  • 3.3 Ca/P Biomaterials for Bone Regeneration
  • 3.3.1 Introduction: Remaining Challenges
  • 3.3.2 Micro- and Nanocomputed Tomography for the Study of Porous Ca/P Biomaterials
  • 3.3.3 Preparation of 3D Porous Blocks and Granules of Ca/P Ceramics
  • 3.3.3.1 Changing the Shape of Ca/P Granular Biomaterial Affects its Biomechanical Resistance
  • 3.3.3.2 Changing the Shape of a Granular Biomaterial Affects its 3D Porosity
  • 3.3.3.3 Changing the 3D Porosity of a Porous Biomaterial Modifies Liquid Diffusion
  • 3.4 Perspectives
  • Acknowledgments
  • References
  • Chapter 4 Zirconia-Based Composites for Biomedical Applications
  • 4.1 Introduction
  • 4.2 Inert Ceramics for Biomedical Applications: Monolithic Al2O3 and ZrO2
  • 4.2.1 Alumina (a-Al2O3)
  • 4.2.2 Zirconia (ZrO2)
  • 4.2.3 Inert Ceramics for Biomedical Applications: ZTA Composites
  • 4.3 New Approach for Biomedical Grade Ceramics: Zirconia-Based Composites
  • 4.3.1 Y-TZP/Al2O3 Composites
  • 4.3.2 Ce-TZP-Based Composites
  • 4.3.2.1 Ce-TZP/Al2O3 Composites
  • 4.3.2.2 Ce-TZP/MgAl2O4 Composites
  • 4.3.2.3 Ce-TZP-Based Composites Containing Elongated Grains
  • 4.3.3 ZrO2/Hydroxyapatite Composites
  • 4.4 Conclusion
  • References
  • Chapter 5 Bioceramics Derived from Marble and Sea Shells as Potential Bone Substitution Materials
  • 5.1 Introduction
  • 5.2 Biomimetic Approaches for Biomaterials Design
  • 5.2.1 Apatites
  • 5.2.2 Calcium Carbonates
  • 5.3 Biogenic Precursors for Hydroxyapatite
  • 5.3.1 Marble
  • 5.3.2 Sea Shells
  • 5.4 Synthesis Routes
  • 5.4.1 Preparation of Precursors
  • 5.4.2 Basic Techniques for Hydroxyapatite Synthesis
  • 5.4.2.1 Wet Precipitation
  • 5.4.2.2 Mechano-Chemical Technique
  • 5.4.2.3 Hydrothermal Technique
  • 5.4.2.4 Sol-Gel Technique
  • 5.4.2.5 Microemulsion by High-Pressure Homogenization (HPH)
  • 5.4.3 Synthesis of Hydroxyapatite by Thermal Treatment of Marble and Shells
  • 5.4.3.1 Calcination of the Raw Material
  • 5.4.3.2 Calcium Oxide Conversion into Hydroxyapatite
  • 5.4.4 Synthesis of Hydroxyapatite by Chemical Treatment of Marble and Shells
  • 5.4.4.1 Hydrothermal Methods
  • 5.4.4.2 Sol-Gel Methods
  • 5.4.4.3 Microemulsion by High-Pressure Homogenization (HPH)
  • 5.5 Processing of Marble and Shells-Derived Hydroxyapatite
  • 5.5.1 Thermal Processing of the Hydroxyapatite Powder
  • 5.5.2 Dense Products (Pellets)
  • 5.5.3 Porous Products (Scaffolds)
  • 5.5.3.1 Conventional Processing Methods
  • 5.5.3.2 Solid Free-Form (SFF) Techniques
  • 5.6 Material Characterization
  • 5.6.1 Chemical Composition
  • 5.6.2 Structure
  • 5.6.2.1 X-Ray Diffraction (XRD) Studies
  • 5.6.2.2 Fourier Transformed Infrared (FT-IR) Spectroscopy Analyses
  • 5.6.3 Morphology
  • 5.6.3.1 Morphology of Powders
  • 5.6.3.2 Morphology of Dense Products (Pellets)
  • 5.6.3.3 Morphology of Porous Products (Scaffolds)
  • 5.6.4 Mechanical Properties
  • 5.6.5 Thermal Stability
  • 5.6.5.1 Dimensional Stability
  • 5.6.5.2 Mass Stability
  • 5.7 In vitro Behavior
  • 5.7.1 Biocompatibility
  • 5.8 Degradation in Biological Environment
  • 5.9 In vivo Performance Evaluation
  • 5.10 Conclusions
  • Acknowledgment
  • References
  • Chapter 6 Bioglasses and Glass-Ceramics in the Na2O-CaO-MgO-SiO2-P2O5-CaF2 System
  • 6.1 Introduction
  • 6.2 General Technical Aspects
  • 6.3 Design of Compositions
  • 6.3.1 CaO-MgO-SiO2 System
  • 6.3.2 Na2O-CaO-SiO2 System
  • 6.3.3 Modifications: Addition of B2O3, P2O5, CaF2, and Na2O to CaO-MgO-SiO2 System
  • 6.4 Materials and Methods
  • 6.4.1 Synthesis
  • 6.4.2 Characterization Techniques
  • 6.5 Structural Features of Glasses, Devitrification, and Materials' Properties
  • 6.5.1 B- and Al-Containing Glasses and Glass-Ceramics
  • 6.5.2 B-Containing Glasses and Glass-Ceramics (Al-Free)
  • 6.5.2.1 Glasses
  • 6.5.2.2 Crystallization of Bulk Glasses
  • 6.5.2.3 Glass-Ceramics from Glass-Powders Compacts
  • 6.5.3 B-Free (and Al-Free) Glasses and Glass-Ceramics
  • 6.6 In vitro Biomineralization Ability (SBF Tests and HA Formation)
  • 6.7 Cell Culture Testing and Tissue Response
  • 6.8 Animal Testing and Clinical Tests
  • 6.8.1 In vivo Animal Tests
  • 6.8.2 Clinical Trials
  • 6.9 Concluding Remarks
  • Acknowledgments
  • Bibliography
  • Chapter 7 Electrical Functionalization and Fabrication of Nanostructured Hydroxyapatite Coatings
  • 7.1 Introduction
  • 7.2 Necessity and Prerequisites of Electrical Functionalization of Hydroxyapatite to Control Bone Cell Attachment
  • 7.3 Computed Designing of Nanostructured Hydroxyapatite Electrical Potential (Structurally Depended Functionalization)
  • 7.3.1 Introduction: Nanostructured HA as Assembled from Nanoclusters
  • 7.4 HA Clusters and Nanoparticles (NPs)
  • 7.4.1 Formation of HA Crystal from HA NPs in Various Conditions, Size, and Shape Effects
  • 7.4.2 Main Features of Electrical Field, Charges, and Potential Inside and Outside of HA Surface
  • 7.4.3 Bulk HA Crystal Structures Design (Infinite Periodical Lattice) and Electrical Potential
  • 7.4.4 Imperfect Crystal with Defects
  • 7.4.5 DOS for O, H, and OH Vacancies and H and OH Interstitials
  • 7.4.6 Exploration of Influences of Various Atoms Substitutions in HA Structure and Properties
  • 7.4.7 Studies of the Substitution Influences of Mg, Sr, and Si Atoms
  • 7.4.8 Studies and Calculations of Mn and Se Substitutions
  • 7.4.9 Combined DOS from Substituted Atoms and OH Vacancy
  • 7.4.10 First Principle to Design HA Nanostructured Surface Properties
  • 7.4.10.1 Super-Cell and Slabs Approaches for HA "Surface-Vacuum" Nanostructure Modeling - Various Versions of the Contemporary Developed Models and Calculations, Based on Different ab Initio/DFT Approaches
  • 7.4.10.2 Surface Charges and Surface Energy for Different HA Surfaces with Different Stoichoimetry in Various Models
  • 7.4.11 The Electron Work Function (from Data of the HA DFT Modeling) to Characterize HA Surface Electrical Charge
  • 7.4.12 Characterization of Electrical Functionalization
  • 7.4.13 Eguchi Originated Technique
  • 7.4.14 Prethreshold Photoelectron Spectroscopy
  • 7.5 Fabrication of Nanostructured Hydroxyapatite Coatings
  • 7.5.1 rf-Magnetron Technique
  • 7.5.2 Engineering of CP Coatings Having Different Morphology and Structures
  • 7.5.3 Doping of the CP Coating by Substitutions
  • 7.5.4 Characterization of Coatings: Physical and Chemical Properties of rf-Magnetron CP Coatings
  • 7.5.5 The Biomedical Properties of rf-Magnetron CP Coatings
  • 7.6 Biological Properties of the Electrically Functionalized Hydroxyapatite Coatings
  • 7.6.1 Introduction
  • 7.7 Biocompatibility of Nanostructured and Electrically Functionalized Hydroxyapatite Coatings: Subcutaneous Model
  • 7.7.1 Tissue and Bone in Vivo Growth on Electrically Functionalized Hydroxyapatite Coatings on the Titanium Substrate
  • 7.8 General Conclusions
  • References
  • Chapter 8 Bioactive Micro-arc Calcium Phosphate Coatings on Nanostructured and Ultrafine-Grained Bioinert Metals and Alloys
  • 8.1 Bioinert Alloys in Nanostructured and Ultrafine-Grained States and Bioactive Calcium Phosphate Coatings for Medical Applications
  • 8.2 Production, Structure, and Mechanical Properties of Bioinert Alloys Based on Titanium and Niobium in Nanostructured and Ultrafine-grained States
  • 8.3 Micro-Arc Oxidation Method for the Production of Bioactive Calcium Phosphate Coatings on the Surface of Bioinert Metals and Alloys
  • 8.3.1 Stage 1: Specimen Preparation
  • 8.3.2 Stage 2: Preparation of Electrolyte
  • 8.3.3 Experimental Methods and Procedures for Investigations of CaP Coatings
  • 8.4 Hydrophilic Calcium Phosphate Coatings with Developed Surface Relief, Porous Morphology, and High Rate of Bioresorption
  • 8.5 Wollastonite-Calcium Phosphate Coatings with Enhanced Strength Characteristic and High Biological Activity
  • 8.6 Zn- or Cu-incorporated Calcium Phosphate Coatings with Promising Antibacterial Properties
  • 8.7 Biological Studies In Vitro of Wollastonite-, Zinc-, and Copper-incorporated Calcium Phosphate Coatings on Titanium and Niobium Alloys
  • 8.8 Development and Medical Applications of Dental Implants Based on Nanostructured Titanium with Calcium Phosphate Coating
  • 8.9 Conclusions
  • Acknowledgments
  • References
  • Chapter 9 Engineering of Bioceramics-Based Scaffold and Its Clinical Applications in Dentistry
  • 9.1 Introduction
  • 9.1.1 Scaffold in Dentistry
  • 9.1.2 Ceramics and Composite Used as Scaffold in Dentistry
  • 9.1.3 Engineering of Scaffold from Bioceramics and Its Application
  • References
  • Chapter 10 Bioceramics in Endodontics
  • 10.1 Introduction
  • 10.2 Portland Cement
  • 10.2.1 Chemical Composition
  • 10.2.2 Physical Parameters
  • 10.2.3 Biological Properties
  • 10.2.4 Clinical Studies
  • 10.3 Mineral Trioxide Aggregate (MTA)
  • 10.3.1 Chemical Composition
  • 10.3.2 Physical Parameters
  • 10.3.3 Biological Properties
  • 10.3.4 Clinical Studies
  • 10.4 MTA Angelus
  • 10.4.1 Chemical Composition
  • 10.4.2 Physical Parameters
  • 10.4.3 Biological Properties
  • 10.4.4 Clinical Studies
  • 10.5 OrthoMTA
  • 10.5.1 Chemical Composition
  • 10.5.2 Physical Parameters
  • 10.5.3 Biological Properties
  • 10.6 MTA Fillapex
  • 10.6.1 Chemical Composition
  • 10.6.2 Physical Parameters
  • 10.7 MTA Plus
  • 10.7.1 Chemical Composition
  • 10.7.2 Physical Parameters
  • 10.7.3 Biological Properties
  • 10.8 MTA Bio
  • 10.8.1 Chemical Composition
  • 10.8.2 Physical Parameters
  • 10.8.3 Biological Properties
  • 10.9 MTA Sealer (MTAS)
  • 10.9.1 Chemical Composition
  • 10.9.2 Physical Parameters
  • 10.9.3 Biological Properties
  • 10.10 E-MTA
  • 10.10.1 Chemical Composition
  • 10.10.2 Physical Parameters
  • 10.10.3 Biological Properties
  • 10.11 MM-MTA
  • 10.11.1 Chemical Composition
  • 10.11.2 Physical Parameters
  • 10.12 Fluoride Containing MTA Cements
  • 10.12.1 Chemical Composition
  • 10.12.2 Physical Parameters
  • 10.12.3 Biological Properties
  • 10.13 Nano-modified MTA
  • 10.13.1 Chemical Composition
  • 10.13.2 Physical Parameters
  • 10.13.3 Biological Properties
  • 10.14 Light-Cured MTA
  • 10.14.1 Chemical Composition
  • 10.14.2 Physical Parameters
  • 10.14.3 Biological Properties
  • 10.15 Endocem MTA
  • 10.15.1 Chemical Composition
  • 10.15.2 Physical Parameters
  • 10.15.3 Biological Properties
  • 10.15.4 Clinical Studies
  • 10.16 Biodentine
  • 10.16.1 Chemical Composition
  • 10.16.2 Physical Parameters
  • 10.16.3 Biological Properties
  • 10.16.4 Clinical Studies
  • 10.17 BioAggregate
  • 10.17.1 Chemical Composition
  • 10.17.2 Biological Properties
  • 10.18 DiaRoot BioAggregate
  • 10.18.1 Chemical Composition
  • 10.18.2 Physical Parameters
  • 10.18.3 Biological Properties
  • 10.19 EndoSequence Root Repair Material (ERRM)
  • 10.19.1 Chemical Composition
  • 10.19.2 Physical Parameters
  • 10.19.3 Biological Properties
  • 10.19.4 Clinical Studies
  • 10.20 iRoot BP
  • 10.20.1 Chemical Composition
  • 10.20.2 Physical Parameters
  • 10.20.3 Biological Properties
  • 10.21 iRoot BP Plus
  • 10.21.1 Chemical Composition
  • 10.21.2 Physical Parameters
  • 10.21.3 Biological Properties
  • 10.22 iRoot SP
  • 10.22.1 Chemical Composition
  • 10.22.2 Physical Parameters
  • 10.22.3 Biological Properties
  • 10.23 iRoot FS
  • 10.24 EndoSequence BC Sealer
  • 10.24.1 Chemical Composition
  • 10.24.2 Physical Parameters
  • 10.24.3 Biological Properties
  • 10.25 Ceramicrete-D
  • 10.25.1 Chemical Composition
  • 10.25.2 Physical Parameters
  • 10.25.3 Biological Properties
  • 10.26 Generex A
  • 10.26.1 Chemical Composition
  • 10.26.2 Physical Parameters
  • 10.27 Capasio
  • 10.27.1 Chemical Composition
  • 10.27.2 Physical Parameters
  • 10.28 Geristore
  • 10.28.1 Biological Properties
  • 10.29 Radiopaque Dicalcium Silicate Cement (RDSC)
  • 10.29.1 Chemical Composition
  • 10.29.2 Physical Parameters
  • 10.29.3 Biological Properties
  • 10.30 Calcium-enriched Mixture (CEM) Cement
  • 10.30.1 Chemical Composition
  • 10.30.2 Physical Parameters
  • 10.30.3 Biological Properties
  • 10.30.4 Clinical Studies
  • 10.31 Calcium Silicate
  • 10.31.1 Chemical Composition
  • 10.31.2 Physical Parameters
  • 10.31.3 Biological Properties
  • 10.32 EndoBinder
  • 10.32.1 Chemical Composition
  • 10.32.2 Physical Parameters
  • 10.32.3 Biological Properties
  • 10.33 Quick-Set
  • 10.33.1 Chemical Composition
  • 10.33.2 Physical Parameters
  • 10.33.3 Biological Properties
  • 10.34 Bioceramic Gutta-percha
  • 10.35 Bioactive Glasses
  • 10.35.1 Chemical Composition
  • 10.35.2 Physical Parameters
  • 10.35.3 Biological Properties
  • 10.36 Cimento Endodontico Rapido (CER)
  • 10.36.1 Chemical Composition
  • 10.36.2 Physical Parameters
  • 10.36.3 Biological Properties
  • 10.37 Endo-CPM Sealer
  • 10.37.1 Chemical Composition
  • 10.37.2 Physical Parameters
  • 10.37.3 Biological Properties
  • 10.38 ProRoot Endo Sealer
  • 10.38.1 Chemical Composition
  • 10.38.2 Physical Parameters
  • 10.38.3 Biological properties
  • 10.38.4 Clinical Studies
  • 10.39 Concluding Remarks
  • References
  • Chapter 11 Extending the Concept of Hemopoietic and Stromal Niches as an Approach to Regenerative Medicine
  • 11.1 Introduction
  • 11.2 Postulated Stage (a Hypothesis) of the Niche Concept
  • 11.3 Morphofunctional Stage of the Niche Concept
  • 11.3.1 Blood Vessels
  • 11.3.2 Nerve Terminals
  • 11.3.3 Cellular Components of the HSCs Niche
  • 11.3.3.1 Mesenchymal Stem Cells
  • 11.3.3.2 Osteoblasts
  • 11.3.3.3 Osteoclasts
  • 11.3.3.4 Vascular Cells
  • 11.3.3.5 Chondrocytes
  • 11.3.3.6 Adipocytes
  • 11.3.4 HSCs Niche Hierarchy
  • 11.3.4.1 Structural Hierarchy of the Niches
  • 11.3.4.2 Functional Hierarchy of the Niches
  • 11.3.4.3 Quiescent Niches as an Evidence of Functional Hierarchy of the Niches
  • 11.3.4.4 Age-related Hierarchy of the Niches
  • 11.3.5 Cue Molecules of the HSCs Niche
  • 11.3.5.1 Niche Signaling for Quiescent Stem Cells
  • 11.3.6 Extracellular Matrix
  • 11.3.7 Bone Matrix as a Specialized Extracellular Matrix
  • 11.4 Topographical Stage of the Niche Concept
  • 11.4.1 Interconnection of Hematopoietic Niches
  • 11.4.2 The Hematopoietic Islands as the Topographical Niches for Hematopoietic Cells
  • 11.4.3 MSCs Niche
  • 11.4.4 Interrelation of Stromal and Hematopoietic Niches
  • 11.4.5 Dynamism of the Niches
  • 11.5 Quantitative Stage of the Niche Concept
  • 11.6 Bioengineering Stage of the Niche Concept
  • 11.6.1 Biological Concept
  • 11.6.2 ECM Mimicking by the Approaches in Materials Science
  • 11.7 Concluding Remarks
  • References
  • Chapter 12 Experimental and Pilot Clinical Study of Different Tissue-Engineered Bone Grafts Based on Calcium Phosphate, Mesenchymal Stem Cells, and Adipose-Derived Stromal Vascular Fraction
  • 12.1 Introduction
  • 12.2 Materials and Methods
  • 12.2.1 Creation of Tissue-Engineered Constructions
  • 12.2.1.1 TCP Manufacturing
  • 12.2.1.2 OCP Manufacturing
  • 12.2.1.3 Characterization of TCP and OCP Ceramic Granules
  • 12.2.1.4 Obtaining of Rabbit Tissue Bioptates
  • 12.2.1.5 Obtaining of Rabbit gMSCs
  • 12.2.1.6 Obtaining of Rabbit adSVF
  • 12.2.1.7 Tissue-Engineered Constructions
  • 12.2.2 Experimental Studies in Vivo
  • 12.2.2.1 Implantation of the Materials
  • 12.2.2.2 X-ray Imaging
  • 12.2.2.3 Histological Analysis
  • 12.2.3 A Pilot Clinical Study
  • 12.2.3.1 Clinical Study Design
  • 12.2.3.2 Creation of Tissue-Engineered Bone Grafts
  • 12.2.3.3 Bone Grafting
  • 12.2.3.4 Clinical Examination
  • 12.2.3.5 X-ray Imaging
  • 12.2.3.6 Histological Analysis
  • 12.2.4 Statistical Analysis
  • 12.3 Results
  • 12.3.1 TCP and OCP Ceramic Granules
  • 12.3.2 Tissue-Engineered Bone Grafts
  • 12.3.3 Biological Activity Under Orthotopic Conditions
  • 12.3.3.1 Tissue-Engineered Bone Graft "TCP?+?gMSCs"
  • 12.3.3.2 Tissue-Engineered Bone Graft "TCP?+?fibrin glue?+?gMSCs"
  • 12.3.3.3 Tissue-Engineered Bone Graft "TCP +?fibrin glue?+?adSVF"
  • 12.3.4 Safety and Efficacy in the Pilot Clinical Trial
  • 12.3.4.1 Clinical Case No. 1
  • 12.3.4.2 Clinical Case No. 2
  • 12.3.4.3 Clinical Case No. 3
  • 12.3.4.4 Clinical Case No. 4
  • 12.4 Discussion
  • 12.4.1 Experimental Part
  • 12.4.2 Clinical Part
  • Acknowledgments
  • References
  • Chapter 13 Bone Substitutes in Orthopedic and Trauma Surgery
  • 13.1 Introduction
  • 13.2 Principles of Bone Grafting
  • 13.3 Causes of Bone Defects in Orthopedic Surgery
  • 13.4 Properties of Bone Substitutes
  • 13.5 Types of Bone Substitutes
  • 13.6 Choosing the Bone Graft
  • 13.7 Demineralized Bone Matrix (DBM)
  • 13.8 Bone Morphogenetic Proteins (BMPs)
  • 13.9 Calcium Phosphate and HA
  • 13.10 Bioactive Glasses
  • 13.11 Polymers-Based Bone Graft Substitutes
  • 13.12 Bone Substitutes in Treating Bone Infections
  • 13.13 Conclusion
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

150,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen