Fundamentals of Ionizing Radiation Dosimetry

Wiley-VCH (Verlag)
  • erschienen am 24. Mai 2017
  • |
  • XLII, 958 Seiten
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-3-527-80824-3 (ISBN)
A new, comprehensively updated follow-up to the acclaimed textbook by F.H. Attix (Introduction to Radiological Physics and Radiation Dosimetry) taking into account the substantial developments in dosimetry since its first edition. This monograph covers charged and uncharged particle interactions at a level consistent with the advanced use of the Monte Carlo method in dosimetry; radiation quantities, macroscopic behaviour and the characterization of radiation fields and beams are covered in detail. A number of chapters include addenda presenting derivations and discussions that offer new insight into established dosimetric principles and concepts. The theoretical aspects of dosimetry are given in the comprehensive chapter on cavity theory, followed by the description of primary measurement standards, ionization chambers, chemical dosimeters and solid state detectors. Chapters on applications include reference dosimetry for standard and small fields in radiotherapy, diagnostic radiology and interventional procedures, dosimetry of unsealed and sealed radionuclide sources, and neutron beam dosimetry. The topics are presented in a logical, easy-to-follow sequence and the text is supplemented by numerous illustrative diagrams, tables and appendices.
For senior undergraduate- or graduate-level students and professionals.
Hervorragendes Lehrbuch, das die Konzepte der radiologischen Physik und Strahlungsdosimetrie verständlich präsentiert. Die Themen bauen logisch aufeinander auf und erleichtern das Verständnis. Unzählige Diagramme und Tabellen verdeutlichen die Konzepte.
1. Auflage
  • Englisch
  • Großbritannien
  • Für höhere Schule und Studium
  • 48
  • |
  • 48 s/w Tabellen
  • 52,45 MB
978-3-527-80824-3 (9783527808243)
weitere Ausgaben werden ermittelt
The four authors continuing the pioneering work of Frank Attix, Prof Pedro Andreo (Karolinska, Stockholm), Dr David T. Burns (BIPM, Paris), Prof Alan E. Nahum (University of Liverpool) and Prof Jan Seuntjens (McGill University, Montreal), are leading scientists in radiation dosimetry, having published between them more than 600 papers in the field. They have co-authored most of the existing national and international recommendations for radiotherapy dosimetry and received a number of international awards for their contributions.
Background and Essentials
Charged-Particle Interactions with Matter
Uncharged-Particle Interactions with Matter
Field and Dosimetric Quantities, Radiation Equilibrium
Elementary Aspects of the Attenuation of Uncharged Particles
Macroscopic Aspects of the Transport of Radiation through Matter
Characterization of Radiation Quality
Monte Carlo Simulation of the Transport of Radiation through Matter
Cavity Theory
Overview of Radiation Detectors and Measurements
Primary Radiation Standards
Ionization Chambers
Chemical Dosimeters
Solid State Detector Dosimetry
Reference Dosimetry for External Beam Radiation Therapy
Dosimetry for Small and Composite Radiotherapy Photon Beams
Reference Dosimetry for Diagnostic and Interventional Radiology
Absorbed Dose Determination for Radionuclides
Neutron Dosimetry
Data Tables

Quantities and Symbols1

Roman letter symbols

A, a

atomic mass, mass number (nucleon number)

distance between the reference plane and the collector of a free-air ionization chamber

activity of a radionuclide
time-integrated activity (MIRD, formerly called cumulated activity)
activity per unit length
apparent activity
specific (or mass) activity
absorbed-dose fraction (radionuclide point isotropic source)
specific absorbed-dose fraction
surface area

B, b

magnetic field vector
buildup factor in broad photon beams, also denoted by , or
backscatter factor in kV x-ray beams in medium 'med'
Molière's expansion parameter
magnetic field strength

impact parameter

number of bits in the integer representation of computer data (computer word length)

C, c

electrical capacitance


restricted cema
shell correction in the stopping-power expression
concentration of species (radiation chemistry)
CT air-kerma index
composite conversion factor in graphite calorimetry
CT dose index
speed of light in vacuum
specific heat capacity of a material 'm'
organ dose conversion coefficient calculated for the quantity

D, d

absorbed dose
absorbed dose to the radiation-sensitive volume of a detector, or to a medium 'med'
absorbed dose to water at a depth in a beam of quality
absorbed dose to plastic at the equivalent depth
absorbed dose due to a radionuclide disintegration of type
mean absorbed dose
isoeffective absorbed dose by protons and heavier charged particles
absorbed dose at depth with constant SSD ( for constant SDD)
absorbed dose to water in a specific field
dose distribution of a pencil beam as a function of depth and radius
central-axis depth-dose distribution of a broad beam of radius
collision diameter in particle interaction (closest distance of approach)

distance (as a generic variable)

electrode separation in a free-air ionization chamber

depth of the 80% depth dose for a photon beam
differential cross section per unit solid angle
differential cross section per energy
double differential cross section, per unit solid angle and per energy
percent depth dose at a depth of 10 cm (photon beam quality specifier)
as above, in the absence of electron contamination, that is, filtered by 1 mm Pb

E, e

electrical field vector
kinetic energy of charged particles
total energy of charged particles (rest energy plus kinetic energy)
positron and electron kinetic energy
kinetic energy of the recoil atom in photon interactions
neutron kinetic energy
energy depth of TLD trap
mean energy of a spectrum
mean energy of a spectrum averaged over a fluence, energy fluence, and air-kerma spectrum, respectively
mean energy of an electron spectrum at the depth ( at the surface)
energy absorbed (water calorimetry)
energy appearing as heat (water calorimetry)
Hartree energy
mean energy of an -type particle emitted in a nuclear transition
maximum energy of a beta decay spectrum
mean energy of a beta decay spectrum
plasma energy of a medium (also denoted by )
expected value of , that is, the th moment of
specific energy (heavy charged particles)
elementary charge, absolute value of the electron charge

F, f

atomic form factor
calibration factor of an electrometer
Goudsmit-Saunderson angular distribution for multiple elastic scattering
Molière's angular distribution for multiple elastic scattering
fraction of a detector signal produced by photons of energy between and
anisotropy function for a radioactive line source
cumulative probability distribution function (CPD)
scaled absorbed dose kernel (radionuclide point isotropic source)
Fermi function in beta decay

efficiency of charge collection in an ionization chamber

enhancement factor of a gas (humid air)

field size at the distance (SSD or SDD) in MV photon beams
oscillator strength of the -shell of an atom
free-electron efficiency of charge collection
conventional broad reference beam (10 cm 10 cm)
machine-specific reference (msr) field)
plan-class-specific reference (msr) field)
generalized oscillator strength (GOS)
optical oscillator strength (OOS)
probability distribution function (PDF) of a continuous variable
Coulomb correction factor
Elwert factor (in bremsstrahlung)
detector signal fraction by photons with attenuation coefficient between and
factor to correct for different radiation interaction coefficients in Fricke dosimetry
generic cavity-theory factor ( for radiation quality

G, g

chamber geometric factor (recombination in pulsed and continuous radiation)
radiation chemical yield; related to the -value
radiation chemical yield of ferric ions in a Fricke dosimeter
geometry function for a radioactive line source; for a point source
generic quantity
radiative fraction; related to radiation yield,
free-electron Landé factor
radial-dose function for a radioactive line source; for a point source

H, h

Hamiltonian operator
homogeneity index of a radiotherapy dose distribution
half-value layer of a kV x-ray spectrum
first and second half-value layers
heat of formation for species (radiation chemistry)
relative humidity
heat defect (water calorimetry)
homogeneity index of a kV x-ray spectrum (
for a neutron detector, response to the photons in a mixed field relative to its response in a photon calibration beam
for a neutron-insensitive detector, response to the photons in a mixed field relative to its response in a photon calibration beam
TLD heating rate (K )
reduced Planck's constant

I, i

mean excitation energy of a medium (known as the -value)
first ionization energy of an atom
intensity of a light beam
ionization current measured by a detector

J, j

particle current density (vector fluence rate)
IA Compton profile
specific charge (charge per unit mass of air)
phase-space current density (also termed energy distribution of vector particle radiance, angular current density, or directional flux)

K, k

electronic kerma (also known as collision kerma, )
radiative kerma
air-kerma spectrum or differential air kerma
air kerma attenuated by an absorber of thickness
air kerma at the quality determined in medium 'med'
entrance-surface air kerma
incident air kerma
air-kerma rate
reference-air-kerma rate of a radioactive source
correction factor to account for relativistic and spin effects (in )
correction factor to account for the screening by atomic electrons (in )
kilovoltage (tube potential), for x-ray spectra produced by electrons with energies in the keV range
wave number ()
photon energy
mean energy of a photon spectrum
Boltzmann constant
effective photon energy of a spectrum
maximum photon energy of a spectrum
correction factors for ionization chamber measurements (generic)
correction factor for photon attenuation in a free-air ionization chamber
correction factor for the axial non-uniformity of the electrical field within an ionization chamber
correction factor for...
"[...] this book is a significant update to previous publications on this topic and a major contribution to the field of radiation dosimetry. [...] It is extremely comprehensive in its coverage of every topic from theoretical background to
clinical practice. This book will serve every member of the medical physics community well." Prof. Peter J. Biggs in Physica Medica (2018)

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

147,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen