Nanotechnology in the Beverage Industry

Fundamentals and Applications
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 30. April 2020
  • |
  • 744 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-819942-8 (ISBN)
 

Nanotechnology in the Beverage industry: Fundamentals and Applications looks at how nanotechnology is being used to enhance water quality, as well as how the properties of nanomaterials can be used to create different properties in both alcoholic and no-alcoholic drinks and enhance the biosafety of both drinks and their packaging. This is an important reference for materials scientists, engineers, food scientists and microbiologists who want to learn more about how nanotechnology is being used to enhance beverage products.

As active packaging technology, nanotechnology can increase shelf-life and maintain the quality of beverages. In the field of water treatment, nanomaterials offer new routes to address challenges.

  • Describes the major properties that make nanomaterials good agents for increasing the purification of water and other beverages
  • Outlines major nanoencapsulation techniques for use in a variety of beverage types
  • Discusses the major challenges of using nanomaterials in both beverages and beverage packaging
  • Englisch
  • San Diego
  • |
  • USA
  • 67,23 MB
978-0-12-819942-8 (9780128199428)
weitere Ausgaben werden ermittelt
  • Intro
  • Nanotechnology in the Beverage Industry: Fundamentals and Applications
  • Copyright
  • Contents
  • Contributors
  • Part 1: Nanomaterials in water treatment
  • Chapter 1: TiO2-based nanomaterials for wastewater treatment
  • 1.1. Introduction
  • 1.2. Photocatalytic activity
  • 1.3. Photocatalytic mechanism
  • 1.4. Photocatalyst TiO2
  • 1.5. Synthesis of TiO2 composites
  • 1.6. Structural studies
  • 1.7. Vibrational analysis
  • 1.8. Photocatalytic activity measurement
  • 1.9. Photocatalytic investigation of TiO2 composites
  • References
  • Further reading
  • Chapter 2: Groundwater treatments using nanomaterials
  • 2.1. Nanotechnology in groundwater treatment
  • 2.2. Adsorption using nanomaterials
  • 2.2.1. Nano-zerovalent iron treatment
  • 2.2.2. Carbonaceous materials
  • 2.2.2.1. Activated carbon
  • 2.2.2.2. Carbon nanotubes
  • 2.2.2.3. Graphene
  • 2.2.3. Metal oxides
  • 2.2.4. Metal-organic framework
  • 2.2.5. Adsorption kinetics and equilibrium
  • 2.3. Photocatalysis
  • 2.4. Implementation of nanotechnology for water treatment
  • 2.4.1. Ex situ
  • 2.4.1.1. Batch processes with suspended nanoparticles
  • 2.4.1.2. Packed bed processes
  • 2.4.2. In situ
  • 2.5. Health implications on the use of nanotechnology in groundwater treatment
  • References
  • Chapter 3: Copper-based ternary metal sulfide nanocrystals embedded in graphene oxide as photocatalyst in water treatment
  • 3.1. Introduction
  • 3.2. Wastewater treatment technologies
  • 3.2.1. Adsorption
  • 3.2.2. Membrane separation
  • 3.2.3. Advanced oxidation processes
  • 3.2.3.1. Electrochemical AOP (EAOP)
  • 3.2.3.2. Sonochemical AOP (SAOP)
  • 3.2.3.3. Photochemical advanced oxidation process
  • 3.2.3.4. Photocatalysis (PCAOP)
  • 3.2.3.5 Basic principles and mechanism for heterogeneous photocatalytic degradation of pollutants
  • 3.3. Copper-based ternary metal sulfide nanocrystals (CBTS)
  • 3.3.1. Classification of copper ternary metal sulfides
  • 3.3.1.1. Group I-III-VI2 compounds (CuInS2 and CuGaS2)
  • 3.3.1.2. Group I-IV-VI2 compounds (Cu2SnS3 (CTS) and Cu3GeS3)
  • 3.3.1.3. Group I-V-VI (Cu-Sb and Cu-Bi chalcogenides)
  • 3.3.2. Synthesis of copper-based ternary metal sulfides
  • 3.3.2.1. Synthesis of group I-III-VI2 compounds (CIS group)
  • 3.3.2.2. Synthesis of group I-IV-VI2 compounds (CTS group)
  • 3.3.2.3. Synthesis of group I-V-VI compounds
  • 3.3.3. Applications of copper metal ternary sulfides
  • 3.3.3.1. Photovoltaic devices
  • 3.3.3.2. Thermoelectric device (TED)
  • 3.3.3.3. Photocatalysis
  • 3.4. Graphene, its derivatives and photocatalysis
  • 3.4.1. Synthesis of graphene oxide
  • 3.4.2. Graphene oxide in wastewater treatment
  • 3.4.3. GO/semiconductor composites
  • 3.4.4. GO/metal chalcogenide nanocomposite photocatalysts
  • 3.4.5. GO/copper-based ternary metal sulfide nanocomposite photocatalysts
  • 3.4.6. Mechanism of action of GO-supported photocatalysts
  • 3.4.7. Future perspective
  • 3.5. Conclusion
  • Acknowledgments
  • References
  • Chapter 4: Nanosensors for water quality control
  • 4.1. Introduction
  • 4.2. Nanosensors
  • 4.2.1. Types of nanosensors
  • 4.2.1.1. Optical nanosensors
  • 4.2.1.2. Electrochemical nanosensors
  • 4.2.1.3. Mechanical nanosensors
  • 4.3. Applications of nanosensors in water quality control
  • 4.4. Conclusion
  • Acknowledgments
  • References
  • Chapter 5: Nanostructured membranes for water treatments
  • 5.1. Introduction
  • 5.2. Concept
  • 5.3. Nanostructured membranes
  • 5.3.1. Nanoporous polymeric membranes
  • 5.3.2. Nanostructured ceramic membranes
  • 5.3.2.1. Preparation methods
  • 5.3.2.2. Layer deposition for composite membranes
  • 5.4. Nanomaterial-incorporated membranes
  • 5.4.1. Carbon nanotubes
  • 5.4.2. Graphene
  • 5.4.3. Zeolites
  • 5.5. Challenges
  • 5.6. Conclusions
  • References
  • Further reading
  • Chapter 6: Nanomaterials for fouling-resistant RO membranes
  • 6.1. Introduction
  • 6.2. Reverse osmosis: Fundamentals and principals
  • 6.3. RO membrane fabrication strategies
  • 6.3.1. CA membranes
  • 6.3.2. TFC membranes
  • 6.3.3. Polyelectrolyte membranes
  • 6.3.4. MMMs
  • 6.3.5. Biomimetic membranes
  • 6.4. RO membranes fouling types
  • 6.4.1. Colloids
  • 6.4.2. Organic fouling
  • 6.4.3. Inorganic fouling
  • 6.4.4. Biofouling
  • 6.5. RO fouling control strategies
  • 6.5.1. Feed pretreatment
  • 6.5.2. Membrane cleaning
  • 6.5.3. Membrane modification
  • 6.6. Utilization of nanomaterials for preparation of antifouling RO membranes
  • 6.6.1. Carbon-based nanoparticles enabled RO membranes
  • 6.6.2. Titanium dioxide-based nanoparticles enabled RO membranes
  • 6.6.3. Silica-based nanoparticles enabled RO membranes
  • 6.6.4. Silver-based nanoparticles enabled RO membranes
  • 6.6.5. Other nanoparticles enabled RO membranes
  • 6.7. Conclusion
  • References
  • Further reading
  • Chapter 7: Nanomaterials in wastewater treatments
  • 7.1. Introduction
  • 7.2. Wastewater and its sources
  • 7.3. Wastewater treatment processes
  • 7.4. Nanomaterials
  • 7.5. Modified metal oxide nanomaterials
  • 7.5.1. Graphene oxide-supported metal oxide nanomaterials
  • 7.5.2. Polymer-supported metal oxide nanomaterials
  • 7.6. Graphene oxide and polymer-supported metal oxide nanomaterials for wastewater treatment
  • 7.6.1. Graphene oxide-supported metal oxide nanomaterials for wastewater treatment
  • 7.6.2. Polymer-supported metal oxide nanomaterials for wastewater treatment
  • 7.7. Conclusions and future perspectives
  • References
  • Chapter 8: Nanomembranes for water treatment
  • 8.1. Introduction
  • 8.2. Synthetic techniques
  • 8.2.1. Drop casting
  • 8.2.2. Vacuum filtration
  • 8.2.3. Spin coating
  • 8.2.4. Langmuir-Blodgett (LB) method
  • 8.3. Some common types of membranes
  • 8.3.1. TMDC membranes
  • 8.3.2. MXene membranes
  • 8.3.3. hBN membranes
  • 8.3.4. MOFs membranes
  • 8.3.5. Zeolite membranes
  • 8.4. Desalination process via 2D membranes
  • 8.4.1. Graphene
  • 8.4.2. Assembled 2D material laminates
  • 8.5. Dye separation via 2D membrane
  • 8.6. Conclusion and future prospects
  • References
  • Chapter 9: The use of nanocatalysts (and nanoparticles) for water and wastewater treatment by means of advanced oxidation ...
  • 9.1. Introduction to nanocatalysts and nanomaterials for pollutant removal
  • 9.1.1. Nature of nanomaterials applied to wastewater treatment
  • 9.2. Advanced oxidation processes (AOPs) for water and wastewater treatment
  • 9.3. Fenton and photo-Fenton processes for water and wastewater treatment
  • 9.4. Heterogeneous photocatalysis for water and wastewater treatment
  • 9.5. Conclusion and future perspectives
  • References
  • Chapter 10: Fe-doped TiO2 nanomaterials for water depollution
  • 10.1. Introduction
  • 10.1.1. General overview
  • 10.1.2. Objectives
  • 10.2. State of the art regarding undoped and Fe-doped TiO2 sol-gel nanomaterials
  • 10.2.1. Photocatalytic effect
  • 10.2.2. Influence of iron dopant on photocatalytic activity
  • 10.3. Undoped and Fe-doped TiO2 sol-gel nanopowders
  • 10.3.1. Short consideration of sol-gel method for TiO2-based nanopowders preparation
  • 10.3.2. Our studies regarding undoped and Fe-doped TiO2 nanopowders
  • 10.3.2.1. Sample preparation
  • 10.3.2.2. Results and discussion
  • 10.4. Undoped and Fe-doped TiO2 sol-gel films
  • 10.4.1. Sol-gel films
  • 10.4.2. Our studies regarding undoped and Fe-doped TiO2 films
  • 10.4.2.1. Sample preparation
  • 10.4.2.2. Results and discussion
  • XRD
  • Anisotropies and migration difficulties of the defects
  • TEM
  • Photocatalytic activity
  • Photocatalytic mechanism for undoped TiO2 anatase
  • Photocatalytic mechanism for Fe-doped TiO2 anatase
  • Correlation structural factors-Photocatalytic activity
  • References
  • Part 2: Smart nanocapsules/nanocarriers in drinks
  • Chapter 11: Nanoencapsulation of flavors for beverage manufacturing
  • 11.1. Flavor
  • 11.2. Flavor perception
  • 11.3. Flavor release
  • 11.3.1. Models for flavor release
  • 11.3.2. Controlled release
  • 11.3.2.1. Diffusion
  • 11.3.2.2. Dissolution
  • 11.3.2.3. Swelling
  • 11.3.2.4. Erosion
  • 11.4. Flavor in emulsion beverages
  • 11.5. Nanotechnology and flavor encapsulation
  • 11.6. Methods for flavor nanoencapsulation
  • 11.6.1. Emulsification
  • 11.6.2. High-pressure homogenization
  • 11.6.3. Ultrasonication
  • 11.6.4. Microfluidization
  • 11.6.5. Phase inversion emulsification
  • 11.6.6. Spray-drying
  • 11.6.7. Spray chilling
  • 11.6.8. Molecular inclusion
  • 11.6.9. Freeze-drying
  • 11.6.10. Electrospraying/electrospinning
  • 11.7. Summary
  • References
  • Chapter 12: Antioxidant-loaded nanocarriers for drinks
  • 12.1. Introduction
  • 12.1.1. Antioxidant compounds
  • 12.1.2. Diversity of antioxidant compounds
  • 12.1.3. Antioxidant compounds and health
  • 12.1.4. Antioxidant compounds as additives
  • 12.2. Nanoencapsulation of bioactive compounds
  • 12.2.1. Nanomaterials and delivery systems
  • 12.2.2. Nanoencapsulation techniques
  • 12.2.3. Incorporation in beverages
  • 12.3. Legislative framework
  • 12.3.1. Nanotechnology
  • 12.3.2. Functional ingredients: Nutrition and health claims
  • 12.3.3. Technological ingredients: Food additives
  • 12.4. Conclusion
  • References
  • Chapter 13: Nanocarriers loaded with nutraceuticals and bioactive ingredients (vitamins and minerals)
  • 13.1. Introduction
  • 13.2. Importance of the nutraceuticals in the food industry
  • 13.2.1. Historical context
  • 13.2.2. Nutraceutical categories
  • 13.3. New solutions for nutraceuticals-Delivery systems
  • 13.4. Nutraceuticals and bioactive ingredients
  • 13.4.1. Probiotics
  • 13.4.2. Flavors
  • 13.4.3. Bioactive lipids
  • 13.4.4. Antioxidants and natural compounds
  • 13.4.5. Vitamins
  • 13.4.5.1. Vitamin B12
  • 13.4.5.2. Vitamin B9
  • 13.4.5.3. Vitamin C
  • 13.4.5.4. Vitamin A
  • 13.4.5.5. Other vitamins
  • 13.4.6. Bioactive proteins, peptides, and enzymes
  • 13.4.7. Minerals
  • 13.4.8. Dyes and colors
  • 13.4.9. Stabilizers
  • 13.5. Encapsulation
  • 13.5.1. Encapsulation techniques
  • 13.5.1.1. Chemical techniques
  • 13.5.1.2. Mechanical techniques
  • 13.5.2. Encapsulating agents
  • 13.5.3. Controlled release mechanisms
  • 13.5.4. Evaluation of the bioavailability
  • 13.6. Conclusions
  • Acknowledgments
  • References
  • Further reading
  • Chapter 14: Multifunctional drinks from all natural ingredients
  • 14.1. Introduction
  • 14.1.1. Remarkable reasons for drinking fresh fruit juice daily
  • 14.1.2. Healthiest beverages we should be drinking
  • 14.1.3. Most unhealthy beverages to be avoided
  • 14.1.4. We can drink green juice every day
  • 14.1.5. Drinks we can have besides water
  • 14.1.6. Natural ingredients in energy drinks
  • 14.1.7. Fresh natural drinks for everybody
  • 14.1.8. Smoothies
  • 14.1.9. Goodness and badness of coffee
  • 14.1.10. Coffee and digestion
  • 14.1.11. Decaffeinated coffee is harmful
  • 14.1.12. Prebiotic foods
  • 14.1.13. Probiotics
  • 14.2. Recent trends on multifunctional drinks from natural ingredients
  • 14.2.1. Tannins from Trapa taiwanensis hulls
  • 14.2.2. Categorization of food ingredients
  • 14.2.3. ``Ultraprocessed foods´´ for the youth
  • 14.2.4. Cosmeceutical effect of ethyl acetate fraction of Kombucha tea
  • 14.2.5. Functional drinks made from ginger extracts
  • 14.2.6. Cocoa- and carob-based drink powders from foam mat drying
  • 14.2.7. Physicochemical properties of Rambutan (Nephelium lappaceum L.) fruit sweating
  • 14.2.8. Investigation of functional properties of cocoa waste from concentrated cocoa drink
  • 14.2.9. Analysis of the lobbying arguments and tactics of stakeholders in the food and drink industries
  • 14.2.10. Nonnutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice
  • 14.2.11. Alginate as a functional food ingredient
  • 14.2.12. A sour milk beverage
  • 14.2.13. Antimicrobial evaluation of Foeniculum vulgare leaves extract ingredient of ethiopian local liquor
  • 14.2.14. Influence of spices on the content of fluoride and antioxidants in black tea infusions
  • 14.2.15. Antiaging effects of guarana (Paullinia cupana) in Caenorhabditis elegans
  • 14.2.16. Influence of dried apple powder additive on physical-chemical and sensory properties of yoghurt
  • 14.2.17. Analysis of natural carbonated drinks
  • 14.2.18. Influence of a microencapsulated Amazonic natural ingredient with potential interest as a functional product
  • 14.2.19. Modern technologies in beverage processing
  • 14.2.20. Homogenization and physical properties of model coffee creamers stabilized by quillaja saponin
  • 14.3. Conclusion
  • References
  • Part 3: Applications of nanotechnology for hygiene of drinks
  • Chapter 15: Nanodevices for the detection of pathogens in milk
  • 15.1. Introduction
  • 15.2. Microbial contamination in milk
  • 15.3. Major pathogens in milk
  • 15.3.1. Listeria monocytogenes
  • 15.3.2. Salmonella
  • 15.3.3. E. coli
  • 15.3.4. Campylobacter species
  • 15.3.5. Shigella species
  • 15.3.6. Brucella species
  • 15.4. Conventional methods used for detection of pathogen in milk
  • 15.4.1. Polymerase chain reaction
  • 15.4.1.1. Components of PCR
  • 15.4.1.2. Steps in PCR
  • 15.4.1.3. Phase of PCR
  • 15.4.2. Loop-mediated isothermal amplification
  • 15.4.2.1. Principle
  • 15.4.2.2. Advantages of LAMP over PCR
  • 15.4.3. Nucleic acid sequence-based amplification
  • 15.4.4. Flow cytometry
  • 15.4.4.1. Main advantages
  • 15.4.4.2. Application
  • 15.4.5. Spectroscopy techniques
  • 15.4.5.1. Raman spectroscopy
  • Principle
  • 15.4.5.2. Fourier transform infrared spectroscopy (FTIR spectroscopy)
  • 15.4.6. Multisensory techniques
  • 15.4.6.1. Electronic nose
  • 15.4.6.2. Electronic tongue
  • 15.4.7. Biosensors
  • 15.4.7.1. Electrochemical biosensors
  • 15.4.7.2. Optical biosensors
  • 15.4.7.3. Mass-sensitive biosensors
  • 15.5. Limitations in the conventional methods
  • 15.6. Nanotechnology in pathogen detection
  • 15.7. Existing nanodevices in pathogen detection in milk
  • 15.7.1. Immunosensing methods combined with nanotechnology
  • 15.7.1.1. Dual mode immunochromatographic assay
  • Working
  • 15.7.1.2. Nanoporous membrane-based impedimetric immunosensor
  • 15.7.1.3. Disposable amperometric immunosensing
  • Preparation of gold nanoparticles
  • Fabrication of gold nanoparticle-modified SPCE (AuNp-SPEC)
  • Detection of pathogen in milk
  • 15.7.1.4. Colloidal gold immunochromatic strip (IS) with double monoclonal antibodies (MCAbs)
  • Preparation of gold nanoparticles
  • Preparation of immunochromatographic strip
  • Detection of pathogen in milk
  • 15.7.2. Nanoparticle-based detection
  • 15.7.2.1. Gold nanoparticles
  • Recombinase polymerase amplification combined with unmodified gold nanoparticles
  • Preparation of gold nanoparticles
  • Detection of pathogen in milk
  • 15.7.2.2. Magnetic nanoparticles
  • Combining biofunctional magnetic nanoparticles and ATP bioluminescence
  • Amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction
  • Detection based on nuclear magnetic resonance by using biofunctionalized magnetic nanoparticles
  • 15.7.3. SERS-based detection
  • 15.7.3.1. SERS-based lateral flow strip biosensor combined with recombinase polymerase amplification (RPA)
  • 15.7.3.2. SERS combined with aptasensor
  • Preparation of AuAg core/shell nanoparticles
  • Preparation of milk sample to be tested
  • 15.7.3.3. SERS integrated with LAMP
  • 15.7.4. Sensor-based detection
  • 15.8. Conclusion
  • References
  • Chapter 16: Corrosion behavior of orthodontic wires in artificial saliva with presence of beverage
  • 16.1. Introduction
  • 16.2. Experimental
  • 16.2.1. Materials
  • 16.2.2. Methods
  • 16.2.2.1. Polarization study
  • 16.2.2.2. AC impedance spectra
  • 16.2.2.3. UV-visible absorption spectra and fluorescence spectra
  • 16.2.2.4. Surface morphology studies
  • 16.3. Results and discussion
  • 16.3.1. Analysis of polarization curves
  • 16.3.1.1. Ni-Ti alloy
  • 16.3.1.2. 22 Carat gold
  • 16.3.1.3. SS 18/8 alloy
  • 16.3.1.4. SS316L alloy
  • 16.3.1.5. Thermoactive alloy
  • 16.3.2. AC impedance spectra study
  • 16.3.2.1. Ni-Ti alloy
  • 16.3.2.2. 22 Carat gold
  • 16.3.2.3. SS 18/8 alloy
  • 16.3.2.4. SS316L alloy
  • 16.3.2.5. Thermoactive alloy
  • 16.3.2.6. Section conclusion
  • 16.3.3. Investigation of the film formed on metal surface
  • 16.3.3.1. UV-visible absorption and fluorescence spectra
  • 16.3.3.2. Fluorescence spectra
  • 16.3.3.3. Scanning morphology study
  • 16.3.3.4. Energy-dispersive analysis of X-rays (EDAX) study
  • 16.3.3.5. Atomic force microscopy (AFM) study
  • 16.4. Conclusions
  • Acknowledgment
  • References
  • Chapter 17: Corrosion resistance of orthodontic wires in artificial saliva with presence of fragrant drink additives
  • 17.1. Aroma compounds used in foods and beverages
  • 17.2. Corrosion resistance of orthodontic wire SS18-8 in artificial saliva with presence of fragrant drink additives: A c ...
  • 17.2.1. Artificial saliva (AS)
  • 17.2.2. Polarization study
  • 17.2.3. AC impedance spectra
  • 17.2.4. Contact angle measurement
  • 17.2.5. AFM images
  • 17.3. Conclusion
  • References
  • Further reading
  • Chapter 18: Nanofiltration in beverage industry
  • 18.1. Introduction
  • 18.2. Properties of nanofiltration membranes
  • 18.3. Application of NF membranes in beverage industry
  • 18.3.1. Wine and beer
  • 18.3.2. Fruit juice processing
  • 18.3.3. Whey and milk
  • 18.4. Conclusions and future trends
  • References
  • Further reading
  • Chapter 19: Chromatographic nano-column technology and its application in beverage analysis
  • 19.1. Introduction to capillary nano-columns for beverage analysis
  • 19.2. Capillary nano-column technology
  • 19.3. Chromatographic nanoseparation techniques
  • 19.3.1. Capillary/nano-liquid chromatography
  • 19.3.2. Capillary electrophoresis/electrochromatograph
  • 19.4. Applications of beverage analysis
  • 19.4.1. Nano-monoliths applications
  • 19.4.2. Packed columns applications
  • 19.4.3. Open-tubular (OT) columns
  • 19.4.4. Miscellaneous applications
  • 19.4.5. Chip LC, CE, and CEC
  • 19.5. Conclusions and perspectives
  • References
  • Part 4: Applications of nanotechnology for packaging of drinks
  • Chapter 20: Active nanoenabled packaging for the beverage industry
  • 20.1. Nanotechnology
  • 20.2. Packaging
  • 20.3. Biobased packaging
  • 20.3.1. Starch and its derivatives
  • 20.3.2. Polylactic acid
  • 20.3.3. Polyhydroxybutyrate
  • 20.3.4. Polycaprolactone
  • 20.4. Beverage packaging
  • 20.5. Nanotechnology in beverage packaging
  • 20.6. Active packaging
  • 20.7. Active packaging and nanotechnology
  • 20.8. Nanocoatings and nanolaminates
  • 20.9. Nanoenabled active packaging materials
  • 20.9.1. Nanotubes and nanofibers
  • 20.9.2. Metallic and metallic oxide nanoparticles
  • 20.9.3. Clay nanoparticles and nanocrystals
  • 20.9.4. Nanocomposites
  • 20.10. Industrial applications of active nanopackaging in beverages
  • 20.11. Nanotechnology and environment and health concerns
  • 20.11.1. Environmental impact
  • 20.11.2. Human health impact
  • 20.11.3. Nanotechnology and food safety
  • 20.12. Active packaging: Legal issue and safety concern
  • 20.12.1. Safety of nanoactive packaging
  • 20.12.2. Food nanopackaging regulations and legislations
  • 20.13. Conclusion
  • References
  • Chapter 21: Biodegradable nanomaterials for drink packaging
  • 21.1. Introduction
  • 21.2. Biopolymers for drink packaging bionanomaterials
  • 21.2.1. PHAs: PHB and PHBV
  • 21.2.2. PLA
  • 21.3. PHB-, PHBV-, and PHA-based material with nanofillers
  • 21.3.1. PHB- and PHBV-based materials with nanofillers
  • 21.3.2. PLA-based materials with nanofillers
  • 21.4. Biodegradable nanomaterials in contact with drink
  • 21.5. Conclusions
  • References
  • Further reading
  • Chapter 22: Polymer nanocomposites for drink bottles
  • 22.1. Introduction
  • 22.2. Polymers for drink packaging
  • 22.2.1. Common polymers used in drink packaging materials
  • 22.2.2. Polymer package-drink-environment potential interactions
  • 22.3. Polymer nanocomposites
  • 22.3.1. Inorganic nanoparticles
  • 22.3.2. Nanoparticles migration from PNCs
  • 22.4. Final considerations
  • References
  • Chapter 23: Powdered alcohol
  • 23.1. Production process
  • 23.2. Recent developments on powdered alcohol
  • 23.2.1. Sorghum grain tea-rich in phenolic compounds
  • 23.2.2. Efficacy of the powder form of coconut inflorescence sap
  • 23.2.3. Powder made of dried cranberry squash
  • 23.2.4. Caffeine level in home-made coffee liqueur
  • 23.2.5. Cereal liquor ``Parshot´´ as a staple food in Dirashe special woreda, southern Ethiopia
  • 23.2.6. Detection of small differences in the acceptance of a new healthy beverage between males and females
  • 23.2.7. Effect of some beverages on the human dental enamel
  • 23.2.8. Comparison of diet pills, powders, and liquids
  • 23.2.9. Spectrophotometric analysis of water, chili powder, chili sauce and tomato sauce samples
  • 23.2.10. Adsorption of patulin from apple juice by inactivated yeast powder
  • 23.2.11. Pyromellitic dianhydride as modified biosorbent by waste beer yeast powder
  • 23.2.12. Influence of Guardian Angel powder on blood alcohol level
  • 23.2.13. Vinegar from Japanese liquor and the antioxidant activity
  • 23.2.14. High amount of phenolics extracted from coconut shell by ultrasound assisted extraction technology
  • 23.2.15. Identification of carbohydrates, carboxylic acids, alcohols, and metals in foods
  • 23.2.16. Incalculable health consequences of alcopops in powder form
  • 23.2.17. Alcohols in food and beverages
  • 23.2.18. Aqueous kava extracts and liver function
  • 23.3. Palcohol
  • References
  • Chapter 24: Powdered wine
  • 24.1. Introduction
  • 24.1.1. Wine powder
  • 24.1.2. Red wine powder and alcohol
  • 24.1.3. Wine is more expensive
  • 24.1.4. Chaptalization
  • 24.1.5. Cheap wine makes one sick
  • 24.1.6. More expensive wine is better
  • 24.1.7. Aging of cheap wine
  • 24.1.8. Sicking by a bad bottle of wine
  • 24.1.9. Wine and headache
  • 24.1.10. Wine spoilage
  • 24.1.11. Benefits of wine
  • 24.2. Recent developments on powdered wine
  • 24.2.1. Detection of micro- and nanoparticles in drinks and foods
  • 24.2.2. Detection of arsenic in wine and beer
  • 24.2.3. Discoloration of red wine
  • 24.2.4. Processing technology of compound dandelion wine
  • 24.2.5. Rice wine and palm wine of Cambodia
  • 24.2.6. Opinions of males and females on new healthy beverage
  • 24.2.7. Detection of mycotoxin
  • 24.2.8. Korean traditional rice wine takju
  • 24.2.9. Schisandra wine
  • 24.2.10. Detection of major and trace elements in food
  • 24.2.11. Colored beverages and the color parameters of a resin composite
  • 24.2.12. Curcuminoid coloring principles in commercial foods
  • 24.2.13. Enhanced microbial production of organic acids
  • 24.2.14. Cocoa-containing and chocolate products rank second after red wines
  • 24.2.15. Whey beer and whey wine
  • 24.2.16. Improvement of wine bloom susceptibility
  • 24.2.17. Analysis of carbohydrates, carboxylic acids, alcohols, and metals in foods
  • 24.2.18. Alcohols in the food and beverages
  • 24.2.19. Red wine does not reduce mature atherosclerosis in apolipoprotein E-deficient mice
  • 24.2.20. Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma
  • 24.2.21. Determination of inorganic anions and cations in wine
  • 24.2.22. Sprouting rice wine
  • 24.2.23. Asbestos fibers in wine samples
  • References
  • Chapter 25: Instant beer
  • 25.1. Introduction
  • 25.2. What is beer?
  • 25.3. The classification of beer
  • 25.4. Chemistry of beer
  • 25.5. Positive and negative effects of beer
  • 25.5.1. Good effects
  • 25.5.2. Bad effects
  • 25.6. Instant beer
  • 25.7. Attempt on instant beer production
  • 25.7.1. Danish brewery invents instant craft-beer powder
  • 25.8. Preparation of instant beer
  • 25.8.1. Tablet or powder for producing a carbonated beer beverage
  • 25.8.1.1. Background of the invention
  • 25.8.1.2. Summary of the present invention
  • 25.8.1.3. Description of preferred embodiments
  • 25.8.2. The popular methods that are used to make instant beer using maize supplied by South African farmers
  • 25.8.2.1. Using high fructose syrup (known as corn sugar)
  • 25.8.2.2. Using broken bits of corn (known as corn grits)
  • 25.8.2.3. Using semicrushed maize (known as flaked maize)
  • 25.8.3. The following methods illustrate the invention
  • 25.8.3.1. Method 1 (anhydrous carbonated corn starch A15B)
  • 25.8.3.2. Method 2 (anhydrous carbonated corn syrup solids A42B6)
  • 25.8.3.3. Method 3 (CSU-corn syrup-sorbed with CO and ethanol)
  • 25.8.3.4. Method 4 (anhydrous ethanol-sorbed gelatinized tapioca starch)
  • 25.8.3.5. Method 5 (coffee flavor-sorbed anhydrous starch)
  • 25.8.3.6. Method 6 (anhydrous cereal-flavor-sorbed flours)
  • 25.8.3.7. Method 7 (anhydrous sorbed breakfast cereals)
  • 25.8.3.8. Method 8 (ginger-flavored anhydrous corn syrup solids)
  • 25.8.3.9. Method 9
  • 25.8.3.10. Method 10
  • 25.8.3.11. Method 11
  • 25.9. Nanomaterials for instant beer
  • 25.9.1. Smart nanocontainers
  • 25.9.2. Nanofiltration and active nanoenabled packaging
  • 25.10. Conclusion
  • References
  • Index

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

232,05 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen