Cable System Transients

Theory, Modeling and Simulation
 
 
Wiley-IEEE Press
  • erschienen am 26. Mai 2015
  • |
  • 416 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-118-70218-5 (ISBN)
 
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field
* Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems
* Written by the internationally renowned pioneer in the field
* Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications
* A companion website is available
weitere Ausgaben werden ermittelt
Akihiro Ametani, Doshisha University, Japan
Teruo Ohno, Tokyo Electric Power Company, Japan
Naoto Nagaoka, Doshisha University, Japan
  • Cover
  • Title Page
  • Copyright
  • Contents
  • About the Authors
  • Preface
  • Acknowledgements
  • Chapter 1 Various Cables Used in Practice
  • 1.1 Introduction
  • 1.2 Land Cables
  • 1.2.1 Introduction
  • 1.2.2 XLPE Cables
  • 1.2.3 SCOF Cables
  • 1.2.4 HPOF Cables
  • 1.3 Submarine Cables
  • 1.3.1 Introduction
  • 1.3.2 HVAC Submarine Cables
  • 1.3.3 HVDC Submarine Cables
  • 1.4 Laying Configurations
  • 1.4.1 Burial Condition
  • 1.4.2 Sheath Bonding
  • References
  • Chapter 2 Impedance and Admittance Formulas
  • 2.1 Single-core Coaxial Cable (SC Cable)
  • 2.1.1 Impedance
  • 2.1.2 Potential Coefficient
  • 2.2 Pipe-enclosed Type Cable (PT Cable)
  • 2.2.1 Impedance
  • 2.2.2 Potential Coefficient
  • 2.3 Arbitrary Cross-section Conductor
  • 2.3.1 Equivalent Cylindrical Conductor
  • 2.3.2 Examples
  • 2.4 Semiconducting Layer Impedance
  • 2.4.1 Derivation of Impedance
  • 2.4.2 Impedance of Two-layered Conductor
  • 2.4.3 Discussion of the Impedance Formula
  • 2.4.4 Admittance of Semiconducting Layer
  • 2.4.5 Wave Propagation Characteristic of Cable with Core Outer Semiconducting Layer
  • 2.4.6 Concluding Remarks
  • 2.5 Discussion of the Formulation
  • 2.5.1 Discussion of the Formulas
  • 2.5.2 Parameters Influencing Cable Impedance and Admittance
  • 2.6 EMTP Subroutines "Cable Constants" and "Cable Parameters"
  • 2.6.1 Overhead Line
  • 2.6.2 Underground/Overhead Cable
  • Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor
  • Appendix 2.B Potential Coefficient
  • Appendix 2.C Internal Impedances of Arbitrary Cross-section Conductor
  • Appendix 2.D Derivation of Semiconducting Layer Impedance
  • References
  • Chapter 3 Theory of Wave Propagation in Cables
  • 3.1 Modal Theory
  • 3.1.1 Eigenvalues and Vectors
  • 3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors
  • 3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System
  • 3.1.4 Modal Theory
  • 3.1.5 Formulation of Multi-conductor Voltages and Currents
  • 3.1.6 Boundary Conditions and Two-port Theory
  • 3.1.7 Problems
  • 3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables
  • 3.2.1 Basic Propagation Characteristics for a Transient
  • 3.2.2 Frequency-dependent Characteristics
  • 3.2.3 Time Response of Wave Deformation
  • 3.3 Three-phase Underground SC Cables
  • 3.3.1 Mutual Coupling between Phases
  • 3.3.2 Transformation Matrix
  • 3.3.3 Attenuation and Velocity
  • 3.3.4 Characteristic Impedance
  • 3.4 Effect of Various Parameters of an SC Cable
  • 3.4.1 Buried Depth h
  • 3.4.2 Earth Resistivity ?e
  • 3.4.3 Sheath Thickness d
  • 3.4.4 Sheath Resistivity ?s
  • 3.4.5 Arrangement of a Three-phase SC Cable
  • 3.5 Cross-bonded Cable
  • 3.5.1 Introduction of Cross-bonded Cable
  • 3.5.2 Theoretical Formulation of a Cross-bonded Cable
  • 3.5.3 Homogeneous Model of a Cross-bonded Cable
  • 3.5.4 Difference between Tunnel-installed and Buried Cables
  • 3.6 PT Cable
  • 3.6.1 Introduction of PT Cable
  • 3.6.2 PT Cable with Finite-pipe Thickness
  • 3.6.3 Effect of Eccentricity of Inner Conductor
  • 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator
  • 3.6.5 Overhead PT Cable
  • 3.7 Propagation Characteristics of Intersheath Modes
  • 3.7.1 Theoretical Analysis of Intersheath Modes
  • 3.7.2 Transients on a Cross-bonded Cable
  • 3.7.3 Earth-return Mode
  • 3.7.4 Concluding Remarks
  • References
  • Chapter 4 Cable Modeling for Transient Simulations
  • 4.1 Sequence Impedances Using a Lumped PI-circuit Model
  • 4.1.1 Solidly Bonded Cables
  • 4.1.2 Cross-bonded Cables
  • 4.1.3 Derivation of Sequence Impedance Formulas
  • 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations
  • 4.3 Dommel Model
  • 4.4 Semlyen Frequency-dependent Model
  • 4.4.1 Semlyen Model
  • 4.4.2 Linear Model
  • 4.5 Marti Model
  • 4.6 Latest Frequency-dependent Models
  • 4.6.1 Vector Fitting
  • 4.6.2 Frequency Region Partitioning Algorithm
  • References
  • Chapter 5 Basic Characteristics of Transients on Single-phase Cables
  • 5.1 Single-core Coaxial (SC) Cable
  • 5.1.1 Experimental Observations
  • 5.1.2 EMTP Simulations
  • 5.1.3 Theoretical Analysis
  • 5.1.4 Analytical Evaluation of Parameters
  • 5.1.5 Analytical Calculation of Transient Voltages
  • 5.1.6 Concluding Remarks
  • 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity
  • 5.2.1 Model Circuit for the EMTP Simulation
  • 5.2.2 Simulation Results for Step-function Voltage Source
  • 5.2.3 FDTD Simulation
  • 5.2.4 Theoretical Analysis
  • 5.2.5 Concluding Remarks
  • 5.3 Effect of a Semiconducting Layer on a Transient
  • 5.3.1 Step Function Voltage Applied to a 2 km Cable
  • 5.3.2 5 x 70 µs Impulse Voltage Applied to a 40 km Cable
  • References
  • Chapter 6 Transient on Three-phase Cables in a Real System
  • 6.1 Cross-bonded Cable
  • 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable
  • 6.1.2 Effect of Cross-bonding
  • 6.1.3 Effect of Various Parameters
  • 6.1.4 Homogeneous Model (See Section 3.5.3)
  • 6.1.5 PAI-circuit Model
  • 6.2 Tunnel-installed 275 kV Cable
  • 6.2.1 Cable Configuration
  • 6.2.2 Effect of Geometrical Parameters on Wave Propagation
  • 6.2.3 Field Test on 275 kV XLPE Cable
  • 6.2.4 Concluding Remarks
  • 6.3 Cable Installed Underneath a Bridge
  • 6.3.1 Model System
  • 6.3.2 Effect of an Overhead Cable and a Bridge
  • 6.3.3 Effect of Overhead Lines on a Cable Transient
  • 6.4 Cable Modeling in EMTP Simulations
  • 6.4.1 Marti's and Dommel's Cable Models
  • 6.4.2 Homogeneous Cable Model (See Section 3.5.3)
  • 6.4.3 Effect of Tunnel-installed Cable
  • 6.5 Pipe-enclosed Type (PT) Cable
  • 6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable
  • 6.5.2 Measured Results
  • 6.5.3 FTP Simulation
  • 6.6 Gas-insulated Substation (GIS) -Overhead Cables
  • 6.6.1 Basic Characteristic of an Overhead Cable
  • 6.6.2 Effect of Spacer in a Bus
  • 6.6.3 Three-phase Underground Gas-insulated Line
  • 6.6.4 Switching Surges in a 500 kV GIS
  • 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable
  • Appendix 6.A
  • Appendix 6.B
  • References
  • Chapter 7 Examples of Cable System Transients
  • 7.1 Reactive Power Compensation
  • 7.2 Temporary Overvoltages
  • 7.2.1 Series Resonance Overvoltage
  • 7.2.2 Parallel Resonance Overvoltage
  • 7.2.3 Overvoltage Caused by System Islanding
  • 7.3 Slow-front Overvoltages
  • 7.3.1 Line Energization Overvoltages from a Lumped Source
  • 7.3.2 Line Energization Overvoltages from a Complex Source
  • 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages
  • 7.4 Leading Current Interruption
  • 7.5 Zero-missing Phenomenon
  • 7.5.1 Zero-missing Phenomenon and Countermeasures
  • 7.5.2 Sequential Switching
  • 7.6 Cable Discharge
  • References
  • Chapter 8 Cable Transient in Distributed Generation System
  • 8.1 Transient Simulation of Wind Farm
  • 8.1.1 Circuit Diagram
  • 8.1.2 Cable Model and Dominant Frequency
  • 8.1.3 Data for Cable Parameters
  • 8.1.4 EMTP Data Structure
  • 8.1.5 Results of Pre-calculation
  • 8.1.6 Cable Energization
  • 8.2 Transients in a Solar Plant
  • 8.2.1 Modeling of Solar Plant
  • 8.2.2 Simulated Results
  • References
  • Index
  • EULA

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

129,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok