Plastics to Energy

Fuel, Chemicals, and Sustainability Implications
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 5. November 2018
  • |
  • 562 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-813141-1 (ISBN)
 

Plastics to Energy: Fuel, Chemicals, and Sustainability Implications covers important trends in the science and technology of polymer recovery, such as the thermo-chemical treatment of plastics, the impact of environmental degradation on mechanical recycling, incineration and thermal unit design, and new options in biodegradable plastics. The book also introduces product development opportunities from waste materials and discusses the main processes and pathways of the conversion of polymeric materials to energy, fuel and chemicals. A particular focus is placed on industrial case studies and academic reviews, providing a practical emphasis that enables plastics practitioners involved in end-of-life aspects to employ these processes.

Final sections examine lifecycle and cost analysis of different plastic waste management processes, exploring the potential of various techniques in modelling, optimization and simulation of waste management options.

  • Introduces new pathways for the end-of-life treatment of plastics and polymers, including conversion to energy, fuel and other chemicals
  • Compares different options to assist materials scientists, engineers and waste management practitioners to choose the most effective and sustainable option
  • Covers the latest trends in the science and technology of polymer energy recovery


Dr. Sultan Al-Salem is an Associate Research Scientist at the Kuwait Institute for Scientific Research, working on a number of projects in the areas of polymer mechanical recycling via waste/virgin blends weathering and evaluation, polymers degradation kinetics in pilot plant reactors, membrane technology in the petroleum industry, indoor/outdoor air quality assessment and CO2 source determination and capture in various industries.

He has worked on a number of R&D projects in the oil & gas sector, as well as the environmental and techno-economic side of chemical engineering. He focuses on applied research in in depolymerization kinetics, thermal engineering, polymer characterization, process & reactors design, separation technologies, weathering and Life Cycle Assessment (LCA).

  • Englisch
  • San Diego
  • |
  • USA
  • 18,95 MB
978-0-12-813141-1 (9780128131411)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Plastics to Energy
  • Copyright Page
  • Dedication
  • Contents
  • List of Contributors
  • About the Authors
  • Preface
  • What Distinguishes This Book From Others Touching on the Topic at Hand?
  • Recommendations for Incorporating This Book in Academic Curricula
  • Acknowledgments
  • Potential Impact of This Book
  • I. Plastics and Plastic Solid Waste (PSW)
  • 1 Introduction
  • 1.1 Introductory Remark: Dependency on Plastics
  • 1.2 The Nature of Plastics and Impact on Waste Management
  • 1.3 Plastics and Polymers: Technical Aspects and Difference Between Both Terms
  • 1.4 Sustainable Production of Polymeric Articles
  • 1.5 History of Plastics to Fuel and Sustainability
  • 1.6 Polymer Waste Generation/Collection Logistics and Socio-Economic Factors
  • 1.7 Summary
  • List of Abbreviations
  • References
  • Further Reading
  • 2 Major Technologies Implemented for Chemicals and Fuel Recovery
  • 2.1 Sources of Plastic Solid Waste
  • 2.2 The Nature of Organic Waste
  • 2.3 A Note on Logistics, Collection, and Generation
  • 2.4 Plastic Solid Waste Management Hierarchy
  • 2.5 Physical Treatment of Plastic Waste
  • 2.6 Chemicals and Energy Production Technologies
  • 2.6.1 Main Mechanisms of Degradation
  • 2.6.2 Chemical Treatment of Pure Nature
  • 2.6.3 Thermo-Chemical Treatment of Polymers
  • 2.6.4 Energy Recovery From Plastics Via Incineration Processes
  • 2.7 Summary
  • List of Abbreviations
  • References
  • 3 Energy Production From Plastic Solid Waste (PSW)
  • 3.1 Key Concepts
  • 3.2 Types of Incineration Units
  • 3.3 Incineration of Plastics
  • 3.4 Governing Regulations and Key Criteria
  • 3.5 Notes and Case History Success Stories
  • List of Abbreviations
  • References
  • 4 The Sustainability Challenge in the Context of Polymer Degradation
  • 4.1 The Fate of Products From Polymers Degradation and Faced Challenges
  • 4.2 Environmental Considerations and Tools
  • 4.2.1 Background, Definitions and Terminology of LCA
  • 4.2.2 Methodology of LCA Execution
  • 4.2.3 Distinguishing LCA Types
  • 4.2.4 Evaluation of Alternatives and Associated Burdens
  • 4.3 Economical and Socioeconomical Aspect of Facilities Encompassing Polymer Degradation
  • 4.4 Case Study: Offsetting Environmental Burdens Associated with Downstream Industry
  • 4.4.1 Benefits of Thermo-Chemical Treatment (TCT) of Plastics
  • 4.4.2 Assumptions and Scenarios Description
  • 4.4.3 Life Cycle Inventory (LCI) and Results
  • 4.4.4 Sustainable Practice Recommendations
  • 4.5 Case Study: Exposure to Mercury From Waste With High Content of Plastic in Incineration Plants
  • 4.5.1 Rationale and Justification
  • 4.5.2 Country Specific Description
  • 4.5.3 Methods
  • 4.5.4 Assessment and Observations
  • 4.5.5 Summary and Concluding Notes
  • 4.6 Concluding Notes
  • List of Abbreviations
  • References
  • Further Reading
  • II. Products Recovery From Plastics
  • 5 Feedstock and Optimal Operation for Plastics to Fuel Conversion in Pyrolysis
  • 5.1 Overview of Concept and Key Issues
  • 5.1.1 Technology Review Encompassing Other Techniques
  • 5.1.2 Advantages of Pyrolysis Over Other Technologies
  • 5.2 Type of Materials and Units Used in the Pyrolysis Process
  • 5.2.1 Materials Properties and Impact
  • 5.2.2 Units and Main Reactor Vessels Used
  • 5.3 Process Conditions
  • 5.4 A Note on Limitations
  • 5.5 The Pyrolysis of End of Life Tires
  • 5.5.1 Importance of Managing End of Life Tires
  • 5.5.2 Origin and Recycling of End of Life Tires
  • 5.6 Case Study: Commissioning a Novel Bench Scale Reactor Unit-SULTAN 1
  • 5.6.1 Work Motivation
  • 5.6.2 Materials
  • 5.6.3 Bench Scale Pyrolysis System Description
  • 5.6.4 Conducted Pyrolysis Reactions
  • 5.6.5 Gas Chromatography Analysis Laboratory Protocol
  • 5.6.6 Obtained Results
  • List of Abbreviations
  • Acknowledgments
  • References
  • Further Reading
  • 6 Catalytic Conversion and Chemical Recovery
  • 6.1 Introduction
  • 6.2 Catalytic Versus Noncatalytic Pyrolysis
  • 6.2.1 Noncatalytic Pyrolysis
  • 6.2.2 Catalytic Pyrolysis
  • 6.2.3 Differences Between Catalytic and Noncatalytic Pyrolysis
  • 6.2.4 Catalysts
  • 6.2.4.1 Homogeneous Catalytic Process
  • 6.2.4.2 Heterogeneous Catalytic Process
  • 6.3 Effect of Operation Variables
  • 6.3.1 Reaction Temperature
  • 6.3.2 Polymer-to-Catalyst Ratio
  • 6.3.3 Polymer Waste Composition
  • 6.3.4 Reaction and Residence Time
  • 6.3.5 Mass and Heat Transfer
  • 6.4 Reactor Types
  • 6.4.1 Fixed and Fluidized Bed Reactors
  • 6.4.2 Conical Spouted Bed Reactor
  • 6.4.3 Batch and Semibatch Reactors
  • 6.4.4 Microwave Assisted Technology
  • 6.5 Processing
  • 6.5.1 Direct Catalytic Pyrolysis
  • 6.5.2 Thermal Pyrolysis With Catalytic Upgrading of Pyrolysis Oil
  • 6.6 Co-processing of Plastics
  • 6.7 Concluding Remarks
  • References
  • 7 Fuel Properties Associated With Catalytic Conversion of Plastics
  • 7.1 Introduction
  • 7.2 Pyrolysis Basics
  • 7.2.1 Kinetics
  • 7.2.2 Thermal Degradation
  • 7.2.3 Catalytic Degradation
  • 7.3 Analytical Quantitative and Qualitative Determination of Pyrolysis
  • 7.3.1 Thermogravimetric Analysis
  • 7.3.2 Pyrolysis-GC/MS
  • 7.3.2.1 Polypropylene and Polyethylene
  • 7.3.2.2 Polystyrene
  • 7.3.2.3 Polyurethane
  • 7.4 Pyrolysis Study of Polypropylene and Polyethylene
  • 7.4.1 Polypropylene
  • 7.4.1.1 Fuel Properties
  • 7.4.1.2 Gasoline and Diesel Products From Distillation of Medicine Bottles-Polypropylene
  • 7.4.1.3 Size Exclusion Chromatography Analysis
  • 7.4.1.4 Simulated Distillation by GC-FID
  • 7.4.1.5 Chemical Characterization of Plastic Oil Fractions
  • 7.4.1.5.1 NMR and IR Analysis
  • 7.4.1.5.2 Properties of Gasoline and Diesel Fractions
  • 7.4.1.5.3 Hydroprocessing
  • 7.4.2 Polyethylene
  • 7.4.2.1 Gasoline and Diesel Products From Distillation of Green Plastics-High-Density Polyethylene
  • 7.4.2.2 Size Exclusion Chromatography Analysis
  • 7.4.2.3 Elemental Analysis
  • 7.4.2.4 Simulated Distillation
  • 7.4.2.5 Fuel Analysis
  • 7.4.2.5.1 NMR and FT-IR Analysis
  • 7.4.2.5.2 Properties of Gasoline and Diesel Fractions
  • 7.4.2.5.3 Hydroprocessing
  • 7.5 Comparison of Pyrolysis Oil Fuel Blends With Commercial Fuel
  • 7.5.1 Properties of Pyrolyzed Polypropylene Samples and Comparison to Ultra-Low Sulfur Diesel
  • 7.5.2 Properties of Blends With Ultra-Low Sulfur Diesel
  • 7.6 Techno-Economic Analysis
  • 7.6.1 Estimation of Capital Investment
  • 7.6.2 Major Equipment
  • 7.6.3 Manufacturing Costs
  • 7.6.4 Variable Production Cost
  • 7.6.4.1 Materials Cost
  • 7.6.4.2 Utilities
  • 7.6.4.3 Operation/Maintenance Cost
  • 7.6.4.4 Labor Costs
  • 7.6.4.5 Fixed Charges
  • 7.6.4.6 Cash Flow
  • 7.7 Conclusions and Future prospects
  • References
  • Further Reading
  • 8 Design and Limitations in Polymer Cracking Fluidized Beds for Energy Recovery
  • 8.1 Introduction
  • 8.2 Fluidization Phenomena and Fluidized Bed Reactors
  • 8.3 Advantages and Limitations of Using the Fluidized Beds for Pyrolysis of Plastic Waste
  • 8.4 Factors Affecting Thermal and Catalytic Pyrolysis in Fluidised Beds
  • 8.5 Thermal Pyrolysis of Municipal Solid Waste in the Fluidized Bed Reactor
  • 8.6 Conclusions
  • References
  • 9 Kinetic Studies Related to Polymer Degradation and Stability
  • 9.1 Importance and Concept of Degradation Kinetics
  • 9.1.1 Major Influencing Variables and Mathematical Derivation
  • 9.1.2 Main Kinetics Analysis Methods
  • 9.1.3 Multiple Step Degradation Kinetics
  • 9.2 Limitations and Considerations in Procedures for Kinetic Experiments
  • 9.3 Plastics Degradation Kinetics in Various Reaction Conditions
  • 9.3.1 Kinetic Parameters and Degradation Mechanism Modeling of Polymers Pyrolysis
  • 9.3.2 Kinetic Analysis In Laboratory Scale Experiments
  • 9.3.3 Kinetic Analysis In Reactive Atmospheres
  • 9.4 Case Study: Isothermal Degradation Reaction Kinetics of Polyethylene in Pyrolysis TG
  • 9.4.1 Review of Isothermal Kinetics in Context of Polymer Degradation
  • 9.4.2 Materials and Experimental Set-up
  • 9.4.3 Polymer Loss and Product Formation Patterns
  • 9.4.4 Mathematical Modeling and Kinetic Parameters Estimation
  • 9.4.5 Main Results of Case Study
  • List of Abbreviations
  • References
  • 10 Gasification of Plastic Solid Waste and Competitive Technologies
  • 10.1 Introduction
  • 10.2 Gasification
  • 10.2.1 Types of Gasifier
  • 10.2.1.1 Fixed/Moving Bed Gasifier
  • 10.2.1.2 Fluidized Bed Gasifier
  • 10.2.1.3 Spouted Bed Gasifier
  • 10.2.2 Gasification Operating Conditions
  • 10.2.2.1 Equivalence Ratio
  • 10.2.2.2 Operating Temperature
  • 10.2.2.3 Gasifying Agents
  • 10.2.2.4 Operating Pressure
  • 10.2.2.5 Feedstock
  • 10.2.3 Challenges in Gasification of Plastic Waste
  • 10.2.3.1 Tar Removal, Gas Cleaning Techniques and Agglomeration Solution
  • 10.2.3.2 Development of Two-Stage Gasifier for Plastic Gasification
  • 10.2.3.3 Cogasification of Plastic with Other Solid Fuels
  • 10.3 Pyrolysis of Plastic Wastes
  • 10.3.1 Characterization of Products from Pyrolysis
  • 10.3.2 Factors Affecting Plastic Pyrolysis
  • 10.3.2.1 Temperature
  • 10.3.2.2 Type of Plastic
  • 10.3.2.3 Residence Time
  • 10.3.2.4 Pressure
  • 10.3.2.5 Catalysts
  • 10.3.2.6 Reactor Type
  • 10.4 Plasma Gasification
  • 10.4.1 Effects of Operating Parameters on Plasma Gasification
  • 10.5 Summary
  • List of Abbreviations
  • Acknowledgment
  • References
  • 11 The Valorization of Plastic Via Thermal Means: Industrial Scale Combustion Methods
  • 11.1 Introduction
  • 11.2 Types of Incinerators
  • 11.2.1 Moving Grate
  • 11.2.2 Fixed Grate
  • 11.2.3 Fluidized Bed
  • 11.2.4 Rotary and Cement Kiln
  • 11.2.5 Pulverized Injection Blast
  • 11.3 Modifications of Incinerators
  • 11.3.1 Rotary Burner's Design
  • 11.3.2 More Fuel Flexibility in Rotary Incineration
  • 11.3.3 Dealing With Medical Waste
  • 11.3.4 Enhancing Heat Transfer and Mixing
  • 11.3.5 Managing Ash Disposal
  • 11.3.6 Simulating the Reactions
  • 11.3.7 Co-combustion
  • 11.4 Environmental Impacts of Incineration
  • 11.4.1 Air Pollutants
  • 11.4.1.1 Carbon Dioxide
  • 11.4.1.2 Dioxins and Furans
  • 11.4.1.3 Nitrogen Oxides
  • 11.4.1.4 Particulate Matter
  • 11.4.2 Impacts on Water
  • 11.4.3 Impacts on Land and Soil
  • 11.4.4 Effects on Human Health
  • 11.5 Conclusion
  • List of Abbreviations
  • References
  • 12 Emissions and Environmental Burdens Associated With Plastic Solid Waste Management
  • 12.1 Introduction
  • 12.1.1 Plastics-Global Production and Statistics
  • 12.1.2 Plastic Waste
  • 12.1.2.1 Sources of Plastic Waste
  • 12.1.2.2 Plastic Waste Production
  • 12.1.2.3 Accumulation of Plastic Waste
  • 12.1.3 Effects of Plastic Waste
  • 12.1.3.1 Effects on Environment
  • 12.1.3.2 Effects on Wildlife
  • 12.1.3.3 Effects on Human Beings
  • 12.2 Management of Plastic Waste
  • 12.2.1 Different Processes of Management
  • 12.2.2 Recycling
  • 12.2.2.1 Mechanical Recycling
  • 12.2.2.2 Applications of Recycled Polymers
  • 12.2.3 Feedstock Recycling
  • 12.2.3.1 Potential Advantages of Feedstock Recycling
  • 12.2.3.2 Potential Disadvantages of Feedstock Recycling
  • 12.2.4 Incineration
  • 12.2.4.1 Incineration Advantages
  • 12.2.4.2 Incineration Disadvantages
  • 12.2.4.3 Applicability of Incineration
  • 12.2.4.4 Incineration Technology
  • 12.2.4.4.1 Pretreatment
  • 12.2.4.4.2 Combustion System
  • 12.2.4.4.3 Energy Recovery
  • 12.2.4.4.4 Flue Gas Cleaning
  • 12.2.4.5 Dioxins and Furans
  • 12.2.5 Landfilling Technology
  • 12.3 Comparative Analysis of Various Plastic Waste Management Techniques
  • 12.4 Global Prospects of Plastics
  • 12.5 Summary and Conclusion
  • List of Abbreviations
  • References
  • III. Sustainable Implications
  • 13 From Waste to Resources: How to Integrate Recycling Into the Production Cycle of Plastics
  • 13.1 Introduction
  • 13.2 Characterization Methods for Waste Plastics
  • 13.2.1 Direct Method
  • 13.2.1.1 Fourier Transform Infrared
  • 13.2.1.2 Differential Scanning Calorimetry
  • 13.2.2 Destructive Method
  • 13.2.2.1 Thermogravimetric Analysis
  • 13.2.2.2 Pyrolysis Gas Chromatography Mass Spectroscopy
  • 13.3 Waste Plastic Separating Methods
  • 13.3.1 Wet Methods
  • 13.3.1.1 Wet Shaking Table
  • 13.3.1.2 Sink-Float Methods
  • 13.3.2 Dry Methods
  • 13.3.2.1 Electrostatic Separation
  • 13.3.2.2 Air Table
  • 13.4 Polymer Recycling Methods
  • 13.4.1 Chemical Recycling by Solvent Dissolution and Reprecipitation
  • 13.4.2 Thermochemical Recycling
  • 13.4.2.1 Pyrolysis
  • 13.4.2.2 Hydrothermal Liquefaction
  • 13.4.2.3 Gasification
  • 13.4.2.4 Mechanical Recycling
  • 13.4.2.5 Feedstock Recycling
  • 13.5 Future Prospects
  • List of Abbreviations
  • References
  • Further Reading
  • 14 Bio-plastics and Biofuel: Is it the Way in Future Development for End Users?
  • 14.1 Introduction
  • 14.2 Conversion of Biomass to Biofuel
  • 14.3 Biomass and Types of Biofuels
  • 14.3.1 First Generation Biofuel
  • 14.3.2 Second Generation Biofuel
  • 14.3.3 Third Generation Biofuels
  • 14.3.4 Fourth Generation Biofuels
  • 14.4 Production of Biofuel: Contemporary Scenario
  • 14.4.1 Biochemical Generation of Biofuel
  • 14.4.2 Thermochemical Generation of Bio-Fuel
  • 14.5 Conversion of Polymers to Fuel
  • 14.5.1 Thermofuel Process
  • 14.5.2 SMUDA Process
  • 14.5.3 Reentech Process
  • 14.6 Summary
  • Acknowledgments
  • References
  • Further Reading
  • 15 Life Cycle Assessment (LCA) in Municipal Waste Management Decision Making
  • 15.1 Introduction
  • 15.2 Life Cycle Assessment Methodology
  • 15.3 Pyrolysis
  • 15.4 Potential Use of Liquids and Solids Produced From Waste Plastic
  • 15.5 The Use of Plastics as Fuel
  • 15.6 Environmental Benefits of Waste Plastic Pyrolysis
  • 15.6.1 Fuel From Nonrecycled Plastic
  • 15.7 Economics of Waste Plastic Management Systems
  • 15.8 Ongoing Efforts in Plastic Pyrolysis
  • 15.9 Discussion
  • 15.10 Summary
  • Acknowledgments
  • References
  • 16 Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation?
  • 16.1 Introduction
  • 16.2 Biodegradable Plastics
  • 16.2.1 Biodegradables in the Market
  • 16.2.1.1 Natural (Bio-Based) Plastics
  • 16.2.1.2 Synthetic/Fossil Fuel-Based Plastics
  • 16.2.2 Manufacturing Process of Biodegradables
  • 16.2.2.1 Production of PLA
  • 16.2.2.2 Production of PHAs
  • 16.2.2.3 Production of PBAT
  • 16.2.2.4 Production of PCL
  • 16.2.2.5 Production of PBS
  • 16.2.3 Properties of Current Biodegradable Plastics
  • 16.2.3.1 Properties of Natural Biodegradable Polymers
  • 16.2.3.2 Properties of Synthetic Biodegradable Polymers
  • 16.2.4 Comparison of Properties Between the Most Consumed Plastics and Current Biodegradable Plastics
  • 16.3 Degradation and Biodegradation Processes
  • 16.3.1 Types of Environmental Degradation and Biodegradation
  • 16.3.2 Mechanisms of Biodegradation
  • 16.4 Factors Affecting the Degradation Process
  • 16.5 Biodegradation on a Large Scale
  • 16.6 Conclusion
  • References
  • 17 Optimization Frameworks in Resource Management and Process Engineering
  • 17.1 Introduction
  • 17.2 Methods of Plastic Waste Management
  • 17.2.1 Thermo-Chemical Conversion of Plastics
  • 17.2.2 Process Parameters
  • 17.3 Process Optimization
  • 17.3.1 Optimization of Yields in a Plastic Conversion Process
  • 17.3.2 Effect of Process Conditions on the Oil and Gas Chemical Composition
  • 17.3.3 Selecting an Optimal Chemical Composition of Catalyst for the Plastic Thermal Conversion Process
  • 17.4 Summary
  • List of Abbreviations
  • Acknowledgments
  • References
  • 18 Waste From Electrical and Electronics Equipment
  • 18.1 Introduction
  • 18.2 Generation of Waste Electrical and Electronics Equipment
  • 18.3 E-Waste Characteristics and Its Composition
  • 18.4 E-Waste Management Methods
  • 18.4.1 Extended Producer Responsibility
  • 18.4.2 The Basel Convention and E-Waste
  • 18.5 Worldwide Overview of E-Waste Management
  • 18.5.1 European Continent
  • 18.5.2 The United States
  • 18.5.3 Asian Countries
  • 18.5.3.1 Japan
  • 18.5.3.2 China
  • 18.5.3.3 India
  • 18.5.3.4 Other Asian Countries
  • 18.5.4 African Context
  • 18.5.5 Latin America
  • 18.6 Effects on Environment and Human Health Due to E-Waste Management
  • 18.7 Social and Economic Impact of E-Waste Management
  • 18.8 Conclusion
  • References
  • Further Reading
  • 19 The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation
  • 19.1 Section 1: What Is the Issue?
  • 19.2 Background: Nonbiodegradable Plastics
  • 19.2.1 What are Plastics and Where are They Used?
  • 19.2.2 What are the Environmental Positives and Negatives of Plastic Production, Use, and Disposal?
  • 19.3 Plastic Accumulation
  • 19.3.1 Accumulation in Landfills
  • 19.3.2 Accumulation in the Oceans
  • 19.4 The Impact of Plastic Accumulation
  • 19.4.1 In Landfills
  • 19.4.2 In the Oceans
  • 19.5 Existing Technologies for Managing Plastic Waste
  • 19.5.1 Specifics of Waste Management Technologies
  • 19.5.1.1 Mechanical Recycling
  • 19.5.1.2 Chemical Recycling
  • 19.5.1.3 Incineration
  • 19.5.1.4 Landfill
  • 19.5.2 How Do the Technologies Compare to Each Other?
  • 19.6 Section 2: How Could Biodegradable Plastics Address the Issue of Plastic Solid Waste Accumulation?
  • 19.7 Background: Biodegradable Plastics
  • 19.7.1 What are Bioplastics/Biodegradable Plastics?
  • 19.7.2 Current Market Share for Biodegradable Plastics
  • 19.8 Substitution Potential of Biodegradable Plastics
  • 19.8.1 Considerations of Land Availability
  • 19.9 How Do Biodegradable Plastics Fit Into and Expand Current Waste Management Practices?
  • 19.9.1 Current Waste Management Practices
  • 19.9.1.1 Mechanical Recycling
  • 19.9.1.1.1 Mechanical Recycling for the Most Common Biodegradable Polymers
  • 19.9.1.2 Chemical Recycling
  • 19.9.1.2.1 Chemical Recycling for the Most Common Biodegradable Polymers
  • 19.9.1.3 Incineration
  • 19.9.1.4 Landfill
  • 19.9.2 Waste Management Practices Specific to the Property of Biodegradability
  • 19.9.2.1 Industrial Composting
  • 19.9.2.2 Anaerobic Digestion
  • 19.9.3 The Reality of Composting and AD as Waste Management Technologies for Biodegradable Plastics
  • 19.9.4 Conclusions From LCA Studies of Different Waste Management Options
  • 19.9.5 Marine Biodegradability of Common Biodegradable Plastics
  • 19.10 What Should be the Role of Biodegradable Plastics?
  • 19.10.1 The Role of Biodegradable Plastics in Addressing Accumulation in Landfills
  • 19.10.1.1 Expanded Discussion
  • 19.10.2 The Role of Biodegradable Plastics in Addressing Accumulation in the Marine Environment
  • 19.10.3 Expanded Discussion
  • 19.10.3.1 Other Recommendations for Ways to Solve Accumulation of Marine Waste
  • 19.10.4 What are the Barriers and Enablers to the Use of Biodegradable Plastics?
  • 19.11 Summary
  • List of Abbreviations
  • Acknowledgments
  • References
  • 20 Research and Development (R&D) Strategies: The Way Forward as We See It
  • 21 Future Directions
  • Reference
  • Epilogue: Don't Waste, Waste
  • Index
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

261,80 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen