Instantaneous Power Theory and Applications to Power Conditioning

 
 
Standards Information Network (Verlag)
  • 2. Auflage
  • |
  • erschienen am 13. Februar 2017
  • |
  • 472 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-30720-4 (ISBN)
 
This book covers instantaneous power theory as well as the importance of design of shunt, series, and combined shunt-series power active filters and hybrid passive-active power filters
* Illustrates pioneering applications of the p-q theory to power conditioning, which highlights distinct differences from conventional theories
* Explores p-q-r theory to give a new method of analyzing the different powers in a three-phase circuit
* Provides exercises at the end of many chapters that are unique to the second edition
2. Auflage
  • Englisch
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 28,33 MB
978-1-119-30720-4 (9781119307204)
weitere Ausgaben werden ermittelt
Hirofumi Akagi is a Professor in the department of electrical and electronic engineering at the Tokyo Institute of Technology. His research interest includes power conversion systems and its applications to industry, transportation, and utility. He has authored and coauthored some 120 IEEE Transactions papers and two invited papers published in Proceedings of the IEEE in 2001 and 2005. He was elected as an IEEE Fellow in 1996, a Distinguished Lecturer of the IEEE Power Electronics and Industry Applications Societies for 1998-1999. He received six IEEE Transactions prize paper awards, and 15 IEEE Industry Applications Society Committee prize paper awards. He is the recipient of the 2001 IEEE Power Electronics William E. Newell Award, the 2004 IEEE Industry Applications Society Outstanding Achievement Award, the 2008 IEEE Richard H. Kaufmann Technical Field Award, and the 2012 IEEE Power & Energy Society Nari Hingorani Custom Power Award. Dr. Akagi served as the President of the IEEE Power Electronics Society for 2007-2008. Since January 2015, he has been serving as the IEEE Division II Director.
Edson Hirokazu Watanabe is a Professor at COPPE/Federal University of Rio de Janeiro, where he teaches Power Electronics. His main fields of interests are converters analysis, modeling and design, active filters and FACTS technologies. Dr. Watanabe has more than 50 journal papers and more than 200 conference papers. He is a member of the IEE-Japan, The Brazilian Society for Automatic Control, The Brazilian Power Electronics Society, CIGRE and Power Engineering, Industry Applications and Power Electronics Societies of IEEE. In 2005, he was admitted to the National Order of Scientific Merit, Brazil. In 2013, he received the IEEE Power & Energy Society Nari Hingorani FACTS Award and became member of the National (Brazil) Academy of Engineering and in 2015 he was elected a member of the Brazilian Academy of Sciences.
Mauricio Aredes received the B.Sc. degree from UFF - Fluminense Federal University, Rio de Janeiro State in 1984, the M.Sc. degree in Electrical Engineering from UFRJ - Federal University of Rio de Janeiro in 1991, and the Dr.-Ing. degree (summa cum laude) from Technische Universität Berlin in 1996. In 1997, he became an Associate Professor at the Federal University of Rio de Janeiro, where he teaches Power Electronics. His main research area includes HVDC and FACTS systems, active filters, Custom Power, Renewable Energy Systems, and Power Quality Issues.
1 - INSTANTANEOUS POWER THEORY AND APPLICATIONS TO POWER CONDITIONING [Seite 3]
2 - Contents [Seite 9]
3 - Preface [Seite 15]
4 - 1 Introduction [Seite 17]
4.1 - 1.1 Concepts and Evolution of Electric Power Theory [Seite 17]
4.2 - 1.2 Applications of the P-q theory to Power Electronics Equipment [Seite 20]
4.3 - 1.3 Harmonic Voltages in Power Systems [Seite 21]
4.4 - 1.4 Identified and Unidentified Harmonic-Producing Loads [Seite 22]
4.5 - 1.5 Harmonic Current and Voltage Sources [Seite 24]
4.6 - 1.6 Basic Principles of Harmonic Compensation [Seite 25]
4.7 - 1.7 Basic Principle of Power Flow Control [Seite 29]
4.8 - References [Seite 31]
5 - 2 Electric Power Definitions: Background [Seite 33]
5.1 - 2.1 Power Definitions Under Sinusoidal Conditions [Seite 34]
5.2 - 2.2 Voltage and Current Phasors and Complex Impedance [Seite 36]
5.3 - 2.3 Complex Power and Power Factor [Seite 37]
5.4 - 2.4 Concepts of Power Under Nonsinusoidal Conditions: Conventional Approaches [Seite 38]
5.4.1 - 2.4.1 Power Definitions by Budeanu [Seite 38]
5.4.2 - 2.4.2 Power Definitions by Fryze [Seite 43]
5.5 - 2.5 Electric Power in Three-Phase Systems [Seite 44]
5.5.1 - 2.5.1 Classifications of Three-Phase Systems [Seite 44]
5.5.2 - 2.5.2 Power in Balanced Three-Phase Systems [Seite 47]
5.5.3 - 2.5.3 Power in Three-Phase Unbalanced Systems [Seite 49]
5.6 - 2.6 Summary [Seite 50]
5.7 - 2.7 Exercises [Seite 50]
5.8 - References [Seite 51]
6 - 3 The Instantaneous Power Theory [Seite 53]
6.1 - 3.1 Basis of the p-q Theory [Seite 53]
6.1.1 - 3.1.1 Historical Background of the p-q Theory [Seite 54]
6.1.2 - 3.1.2 The Clarke Transformation [Seite 55]
6.1.3 - 3.1.3 Three-Phase Instantaneous Active Power in Terms of Clarke Components [Seite 59]
6.1.4 - 3.1.4 The Instantaneous Powers of the p-q Theory [Seite 60]
6.2 - 3.2 The p-q Theory in Three-Phase, Three-Wire Systems [Seite 60]
6.2.1 - 3.2.1 Comparisons with the Conventional Theory [Seite 64]
6.2.2 - 3.2.2 Use of the p-q Theory for Shunt Current Compensation [Seite 70]
6.2.3 - 3.2.3 The Dual p-q Theory [Seite 79]
6.3 - 3.3 The p-q Theory in Three-Phase, Four-Wire Systems [Seite 81]
6.3.1 - 3.3.1 The Zero-Sequence Power in a Three-Phase Sinusoidal Voltage Source [Seite 83]
6.3.2 - 3.3.2 Presence of Negative-Sequence Components [Seite 84]
6.3.3 - 3.3.3 General Case Including Distortions and Imbalances in the Voltages and in the Currents [Seite 85]
6.3.4 - 3.3.4 Physical Meanings of the Instantaneous Real, Imaginary, and Zero-Sequence Powers [Seite 90]
6.3.5 - 3.3.5 Avoiding the Clarke Transformation in the p-q Theory [Seite 91]
6.3.6 - 3.3.6 Modified p-q Theory [Seite 93]
6.4 - 3.4 Instantaneous abc Theory [Seite 97]
6.4.1 - 3.4.1 Active and Nonactive Current Calculation by Means of a Minimization Method [Seite 99]
6.4.2 - 3.4.2 Generalized Fryze Currents Minimization Method [Seite 104]
6.5 - 3.5 Comparisons Between The p-q Theory and The abc Theory [Seite 107]
6.5.1 - 3.5.1 Selection of Power Components to be Compensated [Seite 111]
6.6 - 3.6 The p-q-r Theory [Seite 113]
6.7 - 3.7 Summary [Seite 120]
6.8 - 3.8 Exercises [Seite 121]
6.9 - References [Seite 122]
7 - 4 Shunt Active Filters [Seite 127]
7.1 - 4.1 General Description of Shunt Active Filters [Seite 129]
7.1.1 - 4.1.1 PWM Converters for Shunt Active Filters [Seite 130]
7.1.2 - 4.1.2 Active Filter Controllers [Seite 131]
7.2 - 4.2 Three-Phase, Three-Wire Shunt Active Filters [Seite 134]
7.2.1 - 4.2.1 Active Filters for Constant Power Compensation [Seite 135]
7.2.2 - 4.2.2 Active Filters for Sinusoidal Current Control [Seite 151]
7.2.3 - 4.2.3 Active Filters for Current Minimization [Seite 161]
7.2.4 - 4.2.4 Active Filters for Harmonic Damping [Seite 165]
7.2.5 - 4.2.5 A Digital Controller [Seite 187]
7.3 - 4.3 Three-Phase, Four-Wire Shunt Active Filters [Seite 196]
7.3.1 - 4.3.1 Converter Topologies for Three-Phase, Four-Wire Systems [Seite 197]
7.3.2 - 4.3.2 Dynamic Hysteresis-Band Current Controller [Seite 198]
7.3.3 - 4.3.3 Active Filter dc Voltage Regulator [Seite 200]
7.3.4 - 4.3.4 Optimal Power Flow Conditions [Seite 201]
7.3.5 - 4.3.5 Constant Instantaneous Power Control Strategy [Seite 203]
7.3.6 - 4.3.6 Sinusoidal Current Control Strategy [Seite 205]
7.3.7 - 4.3.7 Performance Analysis and Parameter Optimization [Seite 208]
7.4 - 4.4 Compensation Methods Based on the p-q-r Theory [Seite 220]
7.4.1 - 4.4.1 Reference Power Control Method [Seite 222]
7.4.2 - 4.4.2 Reference Current Control Method [Seite 227]
7.4.3 - 4.4.3 Alternative Control Method [Seite 229]
7.4.4 - 4.4.4 The Simplified Sinusoidal Source Current Strategy [Seite 231]
7.5 - 4.5 Comparisons Between Control Methods Based on the p-q Theory and The p-q-r Theory [Seite 234]
7.6 - 4.6 Shunt Selective Harmonic Compensation [Seite 240]
7.7 - 4.7 Summary [Seite 247]
7.8 - 4.8 Exercises [Seite 247]
7.9 - References [Seite 249]
8 - 5 Hybrid and Series Active Filters [Seite 253]
8.1 - 5.1 Basic Series Active Filter [Seite 253]
8.2 - 5.2 Combined Series Active Filter and Shunt Passive Filter [Seite 255]
8.2.1 - 5.2.1 Example of an Experimental System [Seite 258]
8.2.2 - 5.2.2 Some Remarks about the Hybrid Filters [Seite 268]
8.3 - 5.3 Series Active Filter Integrated with a Double-Series Diode Rectifier [Seite 269]
8.3.1 - 5.3.1 The First-Generation Control Circuit [Seite 271]
8.3.2 - 5.3.2 The Second-Generation Control Circuit [Seite 274]
8.3.3 - 5.3.3 Stability Analysis and Characteristics Comparison [Seite 276]
8.3.4 - 5.3.4 Design of a Switching-Ripple Filter [Seite 279]
8.3.5 - 5.3.5 Experimental Results [Seite 282]
8.4 - 5.4 Comparisons Between Hybrid and Pure Active Filters [Seite 284]
8.4.1 - 5.4.1 Low-Voltage Transformerless Hybrid Active Filter [Seite 284]
8.4.2 - 5.4.2 Low-Voltage, Transformerless, Pure Shunt Active Filter [Seite 287]
8.4.3 - 5.4.3 Comparisons through Simulation Results [Seite 289]
8.5 - 5.5 Hybrid Active Filters for Medium-Voltage Motor Drives [Seite 290]
8.5.1 - 5.5.1 Hybrid Active Filter for a Three-Phase Six-Pulse Diode Rectifier [Seite 291]
8.5.2 - 5.5.2 Hybrid Active Filter for a Three-Phase 12-Pulse Diode Rectifier [Seite 308]
8.6 - 5.6 Summary [Seite 324]
8.7 - 5.7 Exercises [Seite 325]
8.8 - References [Seite 326]
9 - 6 Combined Series and Shunt Power Conditioners [Seite 329]
9.1 - 6.1 The Unified Power Flow Controller [Seite 330]
9.1.1 - 6.1.1 FACTS and UPFC Principles [Seite 331]
9.1.2 - 6.1.2 A Controller Design for the UPFC [Seite 337]
9.1.3 - 6.1.3 UPFC Approach Using a Shunt Multipulse Converter [Seite 344]
9.2 - 6.2 The Unified Power Quality Conditioner [Seite 355]
9.2.1 - 6.2.1 General Description of the UPQC [Seite 356]
9.2.2 - 6.2.2 A Three-Phase, Four-Wire UPQC [Seite 358]
9.2.3 - 6.2.3 The UPQC Combined with Passive Filters (the Hybrid UPQC) [Seite 386]
9.3 - 6.3 The Universal Active Power Line Conditioner [Seite 402]
9.3.1 - 6.3.1 General Description of the UPLC [Seite 402]
9.3.2 - 6.3.2 The Controller of the UPLC [Seite 405]
9.3.3 - 6.3.3 Performance of the UPLC [Seite 413]
9.3.4 - 6.3.4 General Aspects [Seite 427]
9.4 - 6.4 Combined Shunt-Series Filters for AC and DC Sides of Three-Phase Rectifiers [Seite 427]
9.4.1 - 6.4.1 The Combined Shunt-Series Filter [Seite 430]
9.4.2 - 6.4.2 Instantaneous Real and Imaginary Powers in the ac Source [Seite 431]
9.4.3 - 6.4.3 The Instantaneous Power in the dc Side of the Rectifier [Seite 432]
9.4.4 - 6.4.4 Comparison of Instantaneous Powers on the ac and dc Sides of the Rectifier [Seite 434]
9.4.5 - 6.4.5 Control Algorithm of the Active Shunt-Series Filter [Seite 434]
9.4.6 - 6.4.6 The Common dc Link [Seite 437]
9.4.7 - 6.4.7 Digital Simulation [Seite 440]
9.4.8 - 6.4.8 Experimental Results [Seite 442]
9.5 - 6.5 Summary [Seite 443]
9.6 - 6.6 Exercises [Seite 444]
9.7 - References [Seite 445]
10 - Index [Seite 447]
11 - IEEE Press Series on Power Engineering [Seite 467]
12 - EULA [Seite 471]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

108,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen