Biofilms in Plant and Soil Health

 
 
Wiley-Blackwell (Verlag)
  • erschienen am 14. Juli 2017
  • |
  • 568 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-24641-1 (ISBN)
 
Biofilms are predominant mode of life for microbes under natural conditions. The three-dimensional structure of the biofilm provides enhanced protection from physical, chemical and biological stress conditions to associated microbial communities. These complex and highly structured microbial communities play a vital role in maintaining the health of plants, soils and waters. Biofilm associated with plants may be pathogenic or beneficial based on the nature of their interactions. Pathogenic or undesirable biofilm requires control in many situations, including soil, plants, food and water.
Written by leading experts from around the world, Biofilms in Plant and Soil Health provides an up-to-date review on various aspects of microbial biofilms, and suggests future and emerging trends in biofilms in plant and soil health.
Issues are addressed in four sub areas:
I) The fundamentals and significance of biofilm in plant and soil health, and the concept of mono and mixed biofilms by PGPR and fungal biofilms.
II) Biochemical and molecular mechanisms in biofilm studies in plant associated bacteria, and techniques in studying biofilms and their characterization, gene expression and enhanced antimicrobial resistance in biofilms, as well as biotic and biotic factors affecting biofilm in vitro.
III) The ecological significance of soil associated biofilms and stress management and bioremediation of contaminated soils and degraded ecosystems.
IV) Pathogenic biofilm associated with plant and food and its control measures.
This book is recommended for students and researchers working in agricultural and environmental microbiology, biotechnology, soil sciences, soil and plant health and plant protection. Researchers working in the area of quorum sensing, biofilm applications, and understanding microbiome of soil and plants will also find it useful.
1. Auflage
  • Englisch
  • Hoboken
  • |
  • Großbritannien
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 16,91 MB
978-1-119-24641-1 (9781119246411)
1119246415 (1119246415)
weitere Ausgaben werden ermittelt
About the Editors
Iqbal Ahmad is a Professor in the Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India and former visiting Professor, Department of Biology, Umm Al-Qura University, Makkah, Saudia Arabia.
Fohad Mabood Husain is a Post-doctoral Researcher in the Department of Food Science and Nutrition, King Saud University, Saudi Arabia.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • Chapter 1 Biofilms: An Overview of Their Significance in Plant and Soil Health
  • 1.1 Introduction
  • 1.2 Biofilm Associated with Plants
  • 1.3 Biofilm Formation Mechanisms: Recent Update on Key Factors
  • 1.4 Biofilm in Soil and Rhizospheres
  • 1.5 Genetic Exchange in Biofilms
  • 1.6 Diversity and Function of Soil Biofilms
  • 1.7 The Role of Biofilms in Competitive Colonization by PGPR
  • 1.8 Biofilm Synergy in Soil and Environmental Microbes
  • 1.9 Biofilms in Drought Stress Management
  • 1.10 Plant Health and Biofilm
  • 1.11 How Microbial Biofilms Influence Plant Health?
  • 1.12 Soil Health and Biofilms
  • 1.13 How to Assess Soil Health?
  • 1.14 Impact of Biofilms on Soil Health
  • 1.15 Biofilm EPS in Soil Health
  • 1.16 Conclusions and Future Directions
  • References
  • Chapter 2 Role of PGPR in Biofilm Formations and Its Importance in Plant Health
  • 2.1 Introduction
  • 2.2 Rhizosphere: A Unique Source of Microorganisms for Plant Growth Promotion
  • 2.3 Plant Growth-Promoting Rhizobacteria
  • 2.3.1 Direct Impact of Plant Growth-Promoting Rhizobacteria on Plant Nutrition
  • 2.3.1.1 Nitrogen Fixation
  • 2.3.1.2 Phosphorus Solubilization
  • 2.3.1.3 Potassium Solubilization
  • 2.3.1.4 Siderophore Production
  • 2.3.1.5 Phytohormone Production
  • 2.3.1.6 Indole Acetic Acid (IAA) Production
  • 2.3.1.7 Gibberellins and Cytokinins Production
  • 2.3.2 In Direct Impact of Plant Growth-Promoting Rhizobacteria on Plant Nutrition
  • 2.3.2.1 Antibiotic Production
  • 2.3.2.2 Enzyme Production
  • 2.3.2.3 Induced Systemic Resistance
  • 2.3.2.4 Hydrogen Cyanide Production
  • 2.3.2.5 Exopolysaccharides Production or Biofilm Formation
  • 2.4 Biofilm Producing Plant Growth-Promoting Rhizobacteria
  • 2.5 Role of PGPR in Biofilm Formations
  • 2.6 Future Research and Development Strategies for Biofilm Producing Sustainable Technology
  • 2.7 Conclusions
  • Acknowledgments
  • References
  • Chapter 3 Concept of Mono and Mixed Biofilms and Their Role in Soil and in Plant Association
  • 3.1 Introduction
  • 3.2 Soil- and Plant-Associated Biofilms
  • 3.3 Microbial Signaling, Regulation, and Quorum Sensing
  • 3.4 Biotechnology
  • 3.5 Outlook
  • Acknowledgments
  • References
  • Chapter 4 Bacillus Biofilms and Their Role in Plant Health
  • 4.1 Introduction
  • 4.2 Interaction of Bacillus within Plant Rhizosphere and Biofilm Development
  • 4.3 Multispecies Biofilms and Their Significance
  • 4.4 Biofilm Detection and Characterization
  • 4.5 Bacillus Biofilm and Plant Health Promotion
  • 4.6 Conclusion and Future Prospects
  • References
  • Chapter 5 Biofilm Formation by Pseudomonas spp. and Their Significance as a Biocontrol Agent
  • 5.1 Introduction
  • 5.2 Biofilms
  • 5.3 Mechanisms of Biofilm Formation
  • 5.3.1 Quorum Sensing
  • 5.3.2 Regulation in Response to Phosphorus Starvation
  • 5.3.3 Phase Variation
  • 5.3.4 Motility and Chemotaxis
  • 5.3.5 Surface Adhesins
  • 5.3.6 Biofilm Matrix Components
  • 5.4 Metabolites Affecting Biofilm Formation
  • 5.4.1 Plant Defense Compounds
  • 5.4.2 Phenazine
  • 5.4.3 Surfactants
  • 5.5 Biofilm Formation and Biological Control of Plant Diseases
  • 5.6 Conclusion
  • References
  • Chapter 6 Quorum Sensing Mechanisms in Rhizosphere Biofilms
  • 6.1 Background
  • 6.2 QS in Biofilms Formation
  • 6.2.1 Positive Interactions
  • 6.2.1.1 Plant Growth-Promoting Rhizobacteria (PGPR)
  • 6.2.1.2 Rhizobia
  • 6.2.2 Negative Interactions
  • 6.2.3 Cross-Communication
  • 6.3 Conclusions
  • References
  • Chapter 7 Biofilm Formation and Quorum Sensing in Rhizosphere
  • 7.1 Introduction
  • 7.2 Importance of Rhizosphere
  • 7.3 Constituents of Rhizosphere
  • 7.3.1 Physical/Chemical
  • 7.3.2 Rhizosphere-A Hot Niche of Microbial Activity
  • 7.3.2.1 Bacteria
  • 7.3.2.2 Fungi
  • 7.3.2.3 Actinomycetes and Protozoa
  • 7.4 Communication in Rhizosphere
  • 7.5 Quorum Sensing in Rhizobia
  • 7.5.1 Quorum Sensing in Rhizobium
  • 7.5.1.1 cinI and cinR
  • 7.5.1.2 raiI and raiR
  • 7.5.1.3 rhiI and rhiR
  • 7.5.1.4 traI and traR
  • 7.5.2 Quorum Sensing in Sinorhizobium
  • 7.5.2.1 sinI and sinR
  • 7.5.2.2 expR
  • 7.5.2.3 traI, traR and melI
  • 7.5.3 Quorum Sensing in Mesorhizobium
  • 7.6 Quorum Sensing in Pseudomonads
  • 7.6.1 Quorum Sensing in Pseudomonas aeruginosa
  • 7.6.1.1 Las System
  • 7.6.1.2 Rhl System
  • 7.6.1.3 PQS System
  • 7.6.2 Quorum Sensing in Other Pseudomonads
  • 7.7 Biofilm Formation in Rhizosphere
  • 7.7.1 Beneficial Root Biofilm
  • 7.7.2 Pathogenic Root Biofilm
  • 7.7.3 Mixed-Species Biofilm
  • 7.8 Conclusions
  • References
  • Chapter 8 The Significance of Fungal Biofilms in Association with Plants and Soils
  • 8.1 Introduction
  • 8.2 What Is a Biofilm?
  • 8.3 Where Do We Find Filamentous Fungal Biofilms?
  • 8.4 Fungal Biofilms: What Have We Learned from the Budding Yeasts?
  • 8.5 What Does a Filamentous Fungal Biofilm Look Like?
  • 8.6 Examples of Filamentous Fungal Biofilms
  • 8.6.1 Ascomycete Biofilms
  • 8.6.2 Zygomycete Biofilms
  • 8.6.3 Basidiomycete Biofilms
  • 8.6.4 Oomycete Biofilms
  • 8.7 Examples of Fungal Biofilms in Soils and the Rhizosphere
  • 8.7.1 Mycorrhizae
  • 8.7.2 Ectomycorrhizae as a Biofilm
  • 8.7.3 A Brief Look at Endomycorrhiza as a Biofilm
  • 8.8 The Mycorhizosphere
  • 8.9 A Biofilm Approach to Plant Disease Management
  • References
  • Chapter 9 Chemical Nature of Biofilm Matrix and Its Significance
  • 9.1 Introduction
  • 9.2 Structural Composition of EPS
  • 9.2.1 Exopolysaccharides of the Biofilm Matrix
  • 9.2.1.1 Carbohydrate Content of Exopolysaccharides
  • 9.2.1.2 Polysaccharides of Gram-Negative Bacteria
  • 9.2.1.3 Polysaccharides and Related Compounds in Gram-Positive Bacteria
  • 9.2.2 Proteins
  • 9.2.3 eDNA
  • 9.2.4 Surfactants and Lipids
  • 9.2.5 Water
  • 9.3 Properties of Matrices
  • 9.4 Functions of the Extracellular Polymer Matrix: The Role of Matrix in Biofilm Biology
  • 9.4.1 Role of EPS in Biofilm Architecture
  • 9.4.2 Role of EPS in Mechanisms of Antimicrobial Resistance/Tolerance to Other Toxic Substances
  • 9.5 Conclusion
  • Acknowledgments
  • References
  • Chapter 10 Root Exudates: Composition and Impact on Plant-Microbe Interaction
  • 10.1 Introduction
  • 10.2 Chemical Composition of Root Exudates and Their Significance
  • 10.3 Root Exudates in Mediating Plant-Microbe Interaction in Rhizosphere (Negative and Positive Interactions)
  • 10.4 Direct and Indirect Effect of Root Exudates on PGPR, Root Colonization, and in Stress Tolerance
  • 10.4.1 Root Colonization
  • 10.4.2 Root Exudates and Stress Tolerance
  • 10.5 Role of Root Exudates in Biofilm Formation by PGPR
  • 10.6 Role of Root Exudates in Protecting Plants Pathogenic Biofilm, Quorum Sensing Inhibition
  • 10.7 Isolation of Root Exudates
  • 10.8 Conclusion
  • References
  • Chapter 11 Biochemical and Molecular Mechanisms in Biofilm Formation of Plant-Associated Bacteria
  • 11.1 Introduction
  • 11.2 Plant-Associated Bacteria
  • 11.3 Biofilms and Plant Pathogens
  • 11.4 Molecular and Biochemical Mechanisms Involved in Biofilm Formation
  • 11.4.1 Pseudomonas
  • 11.4.2 Xanthomonas
  • 11.4.3 Erwinia
  • 11.4.4 Ralstonia
  • 11.4.5 Pectobacterium carotovorum
  • 11.4.6 Xylella fastidiosa
  • 11.4.7 Agrobacterium tumefaciens
  • 11.4.8 Dickeya
  • 11.4.9 Clavibacter michiganensis
  • 11.4.10 Bacillus subtilis
  • 11.5 Conclusion
  • References
  • Chapter 12 Techniques in Studying Biofilms and Their Characterization: Microscopy to Advanced Imaging System in vitro and in situ
  • 12.1 Introduction
  • 12.2 Classical Techniques to Study Biofilms
  • 12.2.1 Nucleic Acid Stains and FISH (in Combination with Epifluorescence Microscopy)
  • 12.2.2 FISH and Confocal Laser Scanning Microscopy (CLSM)
  • 12.3 The Gold Standard: Flow-Cell Technology and Confocal Laser Scanning Microscopy (CLSM)
  • 12.4 The Biofilm Flow Cell
  • 12.5 Advanced Digital Analysis of Confocal Microscopy Images
  • 12.6 Biofilm Studies at Different Scales
  • 12.6.1 Microscale: LSM and Structural Fluorescent Sensors
  • 12.6.2 Nanoscale: Structured Illumination Microscopy (SIM) and Stimulated Emission Depletion (STED) Microscopy
  • 12.6.3 Mesoscale: Optical Coherence Tomography (OCT) and Scanning Laser Optical Tomography (SLOTy)
  • 12.7 Conclusions and Perspectives
  • Acknowledgments
  • References
  • Chapter 13 Gene Expression and Enhanced Antimicrobial Resistance in Biofilms
  • 13.1 Introduction
  • 13.2 Biofilms in the Plant-Microbe Relationship
  • 13.2.1 Biofilm Formation in the Vascular System (Xylem)
  • 13.2.2 Biofilm Formation in Rizosphere (Roots)
  • 13.3 Stress Induces Biofilm Formation
  • 13.4 Relevance for Bacterial-Associated Plants
  • 13.5 Enhanced Antimicrobial Resistance in Biofilms Is Mediated by Biofilm Physicochemical Characteristics and Specific Changes in Gene Expression
  • 13.6 Potential for Implementing Antibiofilm Strategies to Protect Crops
  • 13.6 Conclusions
  • Acknowledgments
  • References
  • Chapter 14 In Vitro Assessment of Biofilm Formation by Soil- and Plant-Associated Microorganisms
  • 14.1 Introduction
  • 14.2 How to Make a Biofilm
  • 14.3 What Is the Best Way to Make a Biofilm in Vitro?
  • 14.4 Flow Systems
  • 14.4.1 Continuous Plug Flow Reactors
  • 14.4.1.1 Flow Cells
  • 14.4.1.2 Tube Biofilms
  • 14.4.1.3 Drip-Flow Reactor
  • 14.4.1.4 Perfused Biofilm Fermenters
  • 14.4.2 Continuous Flow Stirred Tank Reactors
  • 14.4.2.1 CDC Biofilm Reactor
  • 14.4.2.2 Rotating Disk, Concentric Cylinder, and Annular Reactors
  • 14.5 Static Reactors
  • 14.5.1 Microtiter Plate Assay
  • 14.5.2 MBECT Assay
  • 14.5.3 Colony Biofilm Assay
  • 14.6 Special Considerations for Filamentous Fungal Biofilms
  • 14.7 Biofilm Reactors Used to Characterize Plant-Associated Biofilms
  • 14.8 Value-Added Products from Biofilm Reactors
  • References
  • Chapter 15 Factors Affecting Biofilm Formation in in vitro and in the Rhizosphere
  • 15.1 Introduction
  • 15.2 Process of Biofilm Formation
  • 15.2.1 Attachment
  • 15.2.2 Maturation of the Biofilm
  • 15.2.3 Detachment and Return to the Planktonic Growth Mode
  • 15.3 Factor Influencing Biofilm Formation
  • 15.3.1 Surfaces
  • 15.3.2 Temperature and Moisture Content
  • 15.3.3 Salinity
  • 15.3.4 Nutrient Availability
  • 15.3.5 Microbial Products
  • 15.3.5.1 QS Signal Molecules in Biofilm Formation
  • 15.3.5.2 Antimicrobial Peptides
  • 15.3.5.3 Exopolysaccarides
  • 15.3.6 Soil Enzymes
  • 15.4 Conclusions and Future Direction
  • References
  • Chapter 16 Ecological Significance of Soil-Associated Plant Growth-Promoting Biofilm-Forming Microbes for Stress Management
  • 16.1 Introduction
  • 16.2 Rhizosphere Hub of Plant-Microbe Interactions
  • 16.3 Commencement of Rhizosphere Effect and Bacterial Colonization by Root Exudates
  • 16.3.1 Rhizosphere Effect
  • 16.3.2 Rhizosphere Competence
  • 16.3.3 Involvement of Genes and Traits in Rhizosphere Colonization
  • 16.4 Quorum Sensing as a Way of Interaction between Bacteria and Host Plant
  • 16.5 Biofilms
  • 16.5.1 Why Microorganisms Form Biofilms
  • 16.5.2 Composition of Biofilms
  • 16.5.2.1 Extrapolymeric Substance
  • 16.5.2.2 Water
  • 16.5.2.3 Biomolecules
  • 16.5.3 Mechanism of Biofilm Formation
  • 16.5.3.1 Surface Attachment of Bacteria
  • 16.5.3.2 Microcolony Formation
  • 16.5.3.3 Matured Biofilm and Dispersion
  • 16.5.4 Dynamics of Biofilms
  • 16.5.4.1 Nutritional Conditions
  • 16.5.4.2 Surface Characteristics
  • 16.5.4.3 Exopolysaccharides
  • 16.5.4.4 Flagella and Motility
  • 16.5.4.5 Quorum Sensing Signals
  • 16.5.4.6 Gene Expression
  • 16.5.4.7 Shear Stress
  • 16.5.4.8 Phenazines
  • 16.6 Effects of Stress on Plants
  • 16.6.1 Abiotic Stress
  • 16.6.1.1 Drought Stress in Plants
  • 16.6.1.2 Salinity Stress in Plants
  • 16.6.1.3 Flooding Stress in Plants
  • 16.6.1.4 Heat Stress in Plants
  • 16.6.1.5 Oxidative Stress in Plants
  • 16.6.2 Biotic Stress in Plants
  • 16.7 Stress Tolerance in Plants
  • 16.7.1 Adaptation Mechanisms of Plants Toward Abiotic Stress
  • 16.7.2 Management of Abiotic and Biotic Stresses in Plants
  • 16.7.2.1 Phytohormone Production
  • 16.7.2.2 Maintenance of Nutrient Content
  • 16.7.2.3 Nitrogen Fixation
  • 16.7.2.4 Phosphorous Solubilization
  • 16.7.2.5 Siderophore Production
  • 16.7.2.6 Exopolysaccharide (EPS) Production
  • 16.7.2.7 ACC Deaminase Activity
  • 16.7.2.8 Volatile Organic Compounds (VOCs)
  • 16.7.2.9 PGPR as Biotic Elicitors
  • 16.7.2.10 Induction of Systemic Disease Resistance
  • 16.7.3 Management of Abiotic and Biotic Stress in Plants via Biofilm-Forming Rhizobacteria
  • 16.7.3.1 Salt Stress Amelioration
  • 16.7.3.2 Drought Stress Amelioration
  • 16.7.3.3 Temperature
  • 16.7.3.4 Metal Transformation
  • 16.7.3.5 Biocontrol Activity
  • 16.7.4 Stress Management via Quorum Sensing Signals Producing PGPR
  • 16.8 Conclusion
  • 16.9 Future Perspectives
  • Acknowledgments
  • List of Abbreviations
  • References
  • Chapter 17 Developed Biofilm-Based Microbial Ameliorators for Remediating Degraded Agroecosystems and the Environment
  • 17.1 Introduction
  • 17.2 Developed Microbial Communities as a Potential Tool to Regenerate Degraded Agroecosystems
  • 17.3 Biochemistry of Fungal-Bacterial Biofilms
  • 17.4 Endophytic Microbial Colonization with the Application of Fungal-Bacterial Biofilms
  • 17.5 Biofilm Biofertilizers for Restoration of Conventional Agroecosystems
  • 17.6 Developed Microbial Biofilms for Environmental Bioremediation
  • 17.6.1 Fungal-Bacterial Biofilms for Heavy Metal Bioremediation in Soil-Plant Environment
  • 17.6.2 Fungal-Bacterial Biofilms for Heavy Metal Bioremediation in Wastewater
  • 17.7 Conclusion
  • References
  • Chapter 18 Plant Root-Associated Biofilms in Bioremediation
  • 18.1 Introduction
  • 18.2 Biofilms: Definition and Biochemical Composition
  • 18.3 Bioremediation and Its Significance
  • 18.4 Root-Associated Biofilms
  • 18.4.1 Microbial Biofilm Associations on Plant Root Surface
  • 18.4.2 Formation of Rhizospheric Biofilms by PGPR and Their Application
  • 18.4.3 Role of Root Exudates in Triggering Biofilm Formation
  • 18.4.4 Consequences of Root-Associated Biofilms on Plant Growth
  • 18.5 Bioremediation of Contaminants in Rhizospheric Soils
  • 18.5.1 Rhizosphere, Rhizodeposition, and Bioremediation
  • 18.5.2 Bioremediation of Xenobiotics
  • 18.5.3 Bioremediation of Heavy Metal(loid)s
  • 18.5.4 Rhizobacteria Facilitating Bioremediation
  • 18.5.5 Metal Accumulating Rhizobacteria
  • 18.5.6 Role of Root Exudates in Heavy Metal Decontamination and Degradation of Organic Pollutants
  • 18.6 Implications of Rhizospheric Biofilm Formation on Bioremediation
  • 18.7 Conclusion and Future Prospects
  • Acknowledgments
  • References
  • Chapter 19 Biofilms for Remediation of Xenobiotic Hydrocarbons- A Technical Review
  • 19.1 Introduction
  • 19.1.1 Conventional Bioremediation Technologies
  • 19.1.2 Composition and Properties of Biofilms
  • 19.1.3 Unique Properties of Biofilms
  • 19.1.4 Significance of Biofilms to Environmental Remediation
  • 19.1.5 Objectives
  • 19.2 Polycyclic Aromatic Hydrocarbons
  • 19.2.1 Microbiology of PAH Degradation
  • 19.2.2 Biofilm Processes and PAH Degradation
  • 19.2.3 Microbial Production of Surfactant Molecules
  • 19.2.4 Application of Surfactants
  • 19.2.5 Degradation of PAHs in Biofilm Reactors
  • 19.3 Chlorinated Ethanes, Ethenes, and Aromatics
  • 19.3.1 Chlorinated Ethanes
  • 19.3.1.1 Microbiology of Biodegradation of Chlorinated Ethanes
  • 19.3.1.2 Degradation of Chlorinated Ethanes in Biofilm Reactors
  • 19.3.2 Chlorinated Ethenes
  • 19.3.3 Degradation of Chlorinated Ethenes in Biofilm Reactors
  • 19.4 Chlorinated Aromatics
  • 19.4.1 Degradation of Chlorinated Aromatics in Biofilm Reactors
  • 19.4.2 Benefits of Activated Charcoal and Other Organic Matrixes for Biofilm Reactors
  • 19.5 Polychlorinated Biphenyls (PCBs)
  • 19.5.1 Microbiology of PCB Biodegradation
  • 19.5.2 Biofilms and PCB Degradation
  • 19.5.3 Degradation of PCBs in Biofilm Reactors
  • 19.6 Polychlorinated Dibenzodioxins
  • 19.7 Conclusions
  • References
  • Chapter 20 Plant Pathogenic Bacteria: Role of Quorum Sensing and Biofilm in Disease Development
  • 20.1 Introduction
  • 20.2 Mechanism of Biofilm Formation
  • 20.2.1 Biofilm Formation in Vitro in Plants
  • 20.2.1.1 Gram-Negative Bacteria
  • 20.2.1.2 Gram-Positive Bacteria
  • 20.3 Quorum Sensing Mechanism
  • 20.3.1 Quorum Sensing Regulated Virulence Factors
  • 20.3.1.1 Mechanisms in Gram-Negative Bacteria
  • 20.3.1.2 Mechanisms in Gram-Positive Bacteria
  • 20.3.2 Biofilm Formation in Candida
  • 20.4 Plant Pathogenic Bacteria Diversity and Plant Diseases
  • 20.5 Blocking Quorum Sensing and Virulence in Combating Phytopathogen
  • 20.6 Conclusion
  • References
  • Chapter 21 Biofilm Instigation of Plant Pathogenic Bacteria and Its Control Measures
  • 21.1 Introduction
  • 21.2 Plant Pathogens
  • 21.2.1 Importance and Impact of Plant Pathogenic Bacteria
  • 21.2.2 Plant Pathology and Plant Bacteriology: Historical Background
  • 21.2.3 Classification of Plant Pathogenic Bacteria
  • 21.2.3.1 Rhizosphere Pathogen
  • 21.3 Plant Physiological Alteration by Plant Pathogens
  • 21.3.1 Photosynthesis
  • 21.3.2 Vascular Function
  • 21.3.3 Root Function
  • 21.3.4 Respiration
  • 21.3.5 Transpiration
  • 21.4 Virulence Strategies of Plant Pathogenic Bacteria
  • 21.5 Biofilm Formations
  • 21.5.1 Mechanism of Biofilm Formation
  • 21.5.2 Molecular Insights on Biofilm Formation
  • 21.5.3 Structural and Functional Components Involved in Biofilm Formation
  • 21.5.3.1 Surface Bacterial Factors
  • 21.5.3.2 Extracellular Factors Involved in Bacterial Autoaggregation
  • 21.5.4 Factors Favoring Biofilm Formation
  • 21.6 Biofilm Controlling Strategies in Plant Pathogens
  • 21.7 Main Targets and Some Potential Tools to Modify Biofilms
  • 21.8 Physical Tools for Modifying Biofilms
  • 21.8.1 Modification of Biofilm Surfaces
  • 21.8.2 Hydrophobicity, Surface Roughness, and Surface Charge
  • 21.8.3 Exopolysaccharides
  • 21.8.4 Applications of Hydrolytic Enzymes
  • 21.8.5 Applications of Surface Active Compounds and Natural Products
  • 21.8.6 Quorum Quenching
  • 21.8.6.1 Compound Interfering Systems of AHLs
  • 21.8.6.2 Compound Interfering with Regulation Molecules
  • 21.8.6.3 Action of 3-Indolyl Acetyl Nitrile
  • 21.9 Chemical Methods
  • 21.9.1 Inhibitors of Nucleotide Biosynthesis and DNA Replication as Antibiofilm Agents
  • 21.9.2 Effect of Salicylic Acid on Biofilms
  • 21.9.3 N-acetyl Cysteine Effects on Biofilm
  • 21.10 Biological Methods
  • 21.10.1 Biosurfactants as Antibiofilm Agents
  • 21.10.2 Phage Mediated Biocontrol as Antibiofilm Agents
  • 21.11 Future Prospects of Antibiofilm
  • 21.12 Conclusion
  • References
  • Chapter 22 Applications of Biofilm and Quorum Sensing Inhibitors in Food Protection and Safety
  • 22.1 Introduction
  • 22.2 Biofilm Formation by Foodborne Pathogens
  • 22.3 Significance of Biofilms in Food and Food Environments
  • 22.4 Biofilm Control Strategies in the Food Industry
  • 22.5 Natural Products as Antibiofilm Agents and Their Potential Applications
  • 22.6 Role of QS Inhibitors in Biofilm Control
  • 22.7 Conclusions
  • Acknowledgments
  • References
  • Chapter 23 Biofilm Inhibition by Natural Products of Marine Origin and Their Environmental Applications
  • 23.1 Introduction
  • 23.2 Unity Is Strength: Benefits of Biofilm Formers
  • 23.3 Transition of Slimy Film to Persistent Biofilm
  • 23.4 Biofilm-Related Infections in Plants
  • 23.5 Need for Antibiofilm Agents
  • 23.6 Natural Products of Marine Origin as Antibiofilm Agents
  • 23.7 Semi-synthetic Antibiofilm Agents Inspired by Marine Natural Products
  • 23.8 Environmental Applications of Antibiofilm Agents
  • 23.9 Conclusion
  • References
  • Chapter 24 Plant-Associated Biofilms Formed by Enteric Bacterial Pathogens and Their Significance
  • 24.1 Introduction
  • 24.2 Enteric Pathogens in the Plant Environment
  • 24.3 Colonization and Biofilm Formation by Enteric Bacteria on Plant Surfaces
  • 24.4 Biofilm Regulation in Enteric Bacteria
  • 24.5 Influence of Plant Defense on Survival and Biofilm Formation by Enteropathogens
  • 24.6 Plant-Associated Enteric Bacteria in Food Safety and Human Health
  • 24.7 Conclusions
  • References
  • Chapter 25 Anti-QS/Anti-Biofilm Agents in Controlling Bacterial Disease: An in silico Approach
  • 25.1 Introduction
  • 25.2 Biofilm and Its Significance
  • 25.3 Bioinformatics Approaches in Drug Target Identification and Drug Discovery
  • 25.4 Target Identification Using in silico Technologies
  • 25.5 Data Resources for Drug Target Identification
  • 25.6 Homology Modeling
  • 25.7 Docking
  • 25.8 Virtual Screening
  • 25.9 Application of Bioinformatics in Development of Anti-QS/anti-biofilm Agents
  • 25.10 Virtual Screening for Identification of QS Inhibitors
  • 25.11 Conclusion
  • References
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

172,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok