An Introduction to Categorical Data Analysis

Standards Information Network (Verlag)
  • 3. Auflage
  • |
  • erschienen am 11. Oktober 2018
  • |
  • 400 Seiten
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-40527-6 (ISBN)
A valuable new edition of a standard reference

The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data.

Adding to the value in the new edition is:

* Illustrations of the use of R software to perform all the analyses in the book

* A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis

* New sections in many chapters introducing the Bayesian approach for the methods of that chapter

* More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets

* An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises

Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more.

An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
3rd Revised edition
  • Englisch
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • Überarbeitete Ausgabe
  • 3,97 MB
978-1-119-40527-6 (9781119405276)

weitere Ausgaben werden ermittelt
ALAN AGRESTI is Distinguished Professor Emeritus at the University of Florida. He has presented short courses on categorical data methods in 35 countries. He is the author of seven books, including the bestselling Categorical Data Analysis (Wiley), Foundations of Linear and Generalized Linear Models (Wiley), Statistics: The Art and Science of Learning from Data (Pearson), and Statistical Methods for the Social Sciences (Pearson).
Preface ix

About the Companion Website xiii

1 Introduction 1

1.1 Categorical Response Data 1

1.2 Probability Distributions for Categorical Data 3

1.3 Statistical Inference for a Proportion 5

1.4 Statistical Inference for Discrete Data 10

1.5 Bayesian Inference for Proportions * 13

1.6 Using R Software for Statistical Inference about Proportions * 17

Exercises 21

2 Analyzing Contingency Tables 25

2.1 Probability Structure for Contingency Tables 26

2.2 Comparing Proportions in 2 x 2 Contingency Tables 29

2.3 The Odds Ratio 31

2.4 Chi-Squared Tests of Independence 36

2.5 Testing Independence for Ordinal Variables 42

2.6 Exact Frequentist and Bayesian Inference * 46

2.7 Association in Three-Way Tables 52

Exercises 56

3 Generalized Linear Models 65

3.1 Components of a Generalized Linear Model 66

3.2 Generalized Linear Models for Binary Data 68

3.3 Generalized Linear Models for Counts and Rates 72

3.4 Statistical Inference and Model Checking 76

3.5 Fitting Generalized Linear Models 82

Exercises 84

4 Logistic Regression 89

4.1 The Logistic Regression Model 89

4.2 Statistical Inference for Logistic Regression 94

4.3 Logistic Regression with Categorical Predictors 98

4.4 Multiple Logistic Regression 102

4.5 Summarizing Effects in Logistic Regression 107

4.6 Summarizing Predictive Power: Classification Tables, ROC Curves, and Multiple Correlation 110

Exercises 113

5 Building and Applying Logistic Regression Models 123

5.1 Strategies in Model Selection 123

5.2 Model Checking 130

5.3 Infinite Estimates in Logistic Regression 136

5.4 Bayesian Inference, Penalized Likelihood, and Conditional Likelihood for Logistic Regression * 140

5.5 Alternative Link Functions: Linear Probability and Probit Models * 145

5.6 Sample Size and Power for Logistic Regression * 150

Exercises 151

6 Multicategory Logit Models 159

6.1 Baseline-Category Logit Models for Nominal Responses 159

6.2 Cumulative Logit Models for Ordinal Responses 167

6.3 Cumulative Link Models: Model Checking and Extensions * 176

6.4 Paired-Category Logit Modeling of Ordinal Responses * 184

Exercises 187

7 Loglinear Models for Contingency Tables and Counts 193

7.1 Loglinear Models for Counts in Contingency Tables 194

7.2 Statistical Inference for Loglinear Models 200

7.3 The Loglinear - Logistic Model Connection 207

7.4 Independence Graphs and Collapsibility 210

7.5 Modeling Ordinal Associations in Contingency Tables 214

7.6 Loglinear Modeling of Count Response Variables * 217

Exercises 221

8 Models for Matched Pairs 227

8.1 Comparing Dependent Proportions for Binary Matched Pairs 228

8.2 Marginal Models and Subject-Specific Models for Matched Pairs 230

8.3 Comparing Proportions for Nominal Matched-Pairs Responses 235

8.4 Comparing Proportions for Ordinal Matched-Pairs Responses 239

8.5 Analyzing Rater Agreement * 243

8.6 Bradley-Terry Model for Paired Preferences * 247

Exercises 249

9 Marginal Modeling of Correlated, Clustered Responses 253

9.1 Marginal Models Versus Subject-Specific Models 254

9.2 Marginal Modeling: The Generalized Estimating Equations (GEE) Approach 255

9.3 Marginal Modeling for Clustered Multinomial Responses 260

9.4 Transitional Modeling, Given the Past 263

9.5 Dealing with Missing Data * 266

Exercises 268

10 Random Effects: Generalized Linear Mixed Models 273

10.1 Random Effects Modeling of Clustered Categorical Data 273

10.2 Examples: Random Effects Models for Binary Data 278

10.3 Extensions to Multinomial Responses and Multiple Random Effect Terms 284

10.4 Multilevel (Hierarchical) Models 288

10.5 Latent Class Models * 291

Exercises 295

11 Classification and Smoothing * 299

11.1 Classification: Linear Discriminant Analysis 300

11.2 Classification: Tree-Based Prediction 302

11.3 Cluster Analysis for Categorical Responses 306

11.4 Smoothing: Generalized Additive Models 310

11.5 Regularization for High-Dimensional Categorical Data (Large p) 313

Exercises 321

12 A Historical Tour of Categorical Data Analysis * 325

Appendix: Software for Categorical Data Analysis 331

A.1 R for Categorical Data Analysis 331

A.2 SAS for Categorical Data Analysis 332

A.3 Stata for Categorical Data Analysis 342

A.4 SPSS for Categorical Data Analysis 346

Brief Solutions to Odd-Numbered Exercises 349

Bibliography 363

Examples Index 365

Subject Index 369

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

115,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen