Wound Healing Biomaterials - Volume 2

Functional Biomaterials
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 30. Mai 2016
  • |
  • 542 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100606-1 (ISBN)
 

Wound Healing Biomaterials: Volume Two, Functional Biomaterials discusses the types of wounds associated with trauma, illness, or surgery that can sometimes be extremely complex and difficult to heal. Consequently, there is a prominent drive for scientists and clinicians to find methods to heal wounds opening up a new area of research in biomaterials and the ways they can be applied to the challenges associated with wound care.

Much research is now concerned with new therapies, regeneration methods, and the use of biomaterials that can assist in wound healing and alter healing responses. This book provides readers with a thorough review of the functional biomaterials used for wound healing, with chapters discussing the fundamentals of wound healing biomaterials, films for wound healing applications, polymer-based dressing for wound healing applications, and functional dressings for wound care.


  • Includes more systematic and comprehensive coverage on the topic of wound care
  • Provides thorough coverage of all specific therapies and biomaterials for wound healing
  • Contains clear layout and organization that is carefully arranged with clear titles and comprehensive section headings
  • Details specific sections on the fundamentals of wound healing biomaterials, films for wound healing applications, polymer-based dressing for wound healing applications, and more
  • Englisch
  • London
Elsevier Science
  • 7,48 MB
978-0-08-100606-1 (9780081006061)
0081006063 (0081006063)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Wound Healing Biomaterials - Volume 2
  • Related titles
  • Wound Healing Biomaterials
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • One - Fundamentals of wound healing biomaterials
  • 1 - Introduction to biomaterials for wound healing
  • 1.1 Definition of biomaterial
  • 1.2 Types of biomaterials
  • 1.2.1 Synthetic biomaterials
  • 1.2.1.1 Metals
  • 1.2.1.2 Polymers
  • 1.2.1.3 Ceramics
  • 1.2.1.4 Composites
  • 1.2.2 Natural biomaterials
  • 1.3 Wound healing
  • 1.3.1 Traditional dressings
  • 1.3.2 Biomaterial-based dressings
  • 1.3.3 Artificial dressings
  • 1.4 Biomaterials used for dermal wound healing
  • 1.4.1 Synthetic biomaterials
  • 1.4.1.1 Polyurethanes and their derivatives
  • 1.4.1.2 Teflon
  • 1.4.1.3 Silicone
  • 1.4.2 Natural biomaterials
  • 1.5 Polysaccharide-based biomaterial
  • 1.5.1 Homoglycans
  • 1.5.1.1 Starch
  • 1.5.1.2 ß-Glucans
  • 1.5.1.3 Chitin and chitosan
  • 1.5.1.4 Cellulose
  • 1.5.2 Heteroglycans
  • 1.5.2.1 Alginic acid and its salts
  • 1.5.2.2 Glycosaminoglycans
  • 1.5.2.3 Hyaluronic acid
  • 1.5.2.4 Pectins
  • 1.6 Protein-based biomaterial
  • 1.6.1 Collagen
  • 1.6.2 Gelatin
  • 1.6.3 Keratin
  • 1.6.4 Fibrin
  • 1.6.5 Bovine serum albumin
  • 1.6.6 Silk fibroin
  • 1.6.7 Silk sericin
  • 1.7 Nanofiber-based biomaterial
  • 1.8 Marine biomaterial
  • 1.8.1 Sulfated polysaccharides from red algae
  • 1.8.2 Sulfated polysaccharides from green algae
  • 1.8.3 Sulfated polysaccharides from brown algae
  • 1.9 Biomaterials with antimicrobial activity
  • 1.9.1 Honey
  • 1.9.2 Iodine
  • 1.9.3 Silver
  • 1.9.4 Chitosan
  • 1.10 Biomaterials used for corneal wound healing
  • 1.10.1 Collagen/gelatin
  • 1.10.2 Fibrin
  • 1.10.3 Alginate
  • 1.10.4 Chitosan
  • 1.11 Trends of biomaterials used for wound healing
  • 1.11.1 Extracellular matrix-derived biomaterials
  • 1.12 Limitations of biomaterials for wound healing applications
  • 1.13 Conclusions
  • References
  • 2 - Modelling of cell-tissue interactions in skin
  • Definitions
  • 2.1 Introduction
  • 2.2 Brief overview of cutaneous wound healing
  • 2.3 Foreign body response
  • 2.4 Modulating cell responses to biomaterials
  • 2.5 Biomaterials for wound healing
  • 2.6 Skin substitutes
  • 2.7 Other uses of skin substitutes
  • 2.8 Stem cells
  • 2.9 Conclusions
  • References
  • 3 - Biofilms in wounds and wound dressing
  • 3.1 Introduction
  • 3.2 Infectious disease: microbial biofilm and human health
  • 3.3 Basic microbiology of planktonic and biofilm bacteria
  • 3.4 Biofilms in wounds
  • 3.5 Biofilm-based wound care
  • 3.6 Wound healing biomaterials: features, function, and impact on microbial biofilms
  • 3.7 Topical antibiotic combination treatments based on DNA identification of bacteria
  • 3.8 Polymerase chain reaction and sequencing
  • 3.9 Biofilm debridement
  • 3.10 Discussion and future trends
  • References
  • 4 - The importance of preventing and controlling biofilm in wounds: biofilm models and nanotechnology in antibiofilm approaches
  • 4.1 Antibiofilm approaches in wound care
  • 4.1.1 Biofilms in wound healing
  • 4.1.2 Antibiofilm agents
  • 4.2 In vitro biofilm models for studying chronic wounds
  • 4.3 Nanotechnology and wound healing
  • 4.3.1 Nanotechnology
  • 4.3.2 Nanoparticles in wound healing
  • 4.3.3 Silver nanoparticles and green perspectives
  • 4.4 Futures directions and conclusion
  • References
  • 5 - Control and treatment of infected wounds
  • 5.1 Background
  • 5.2 Current treatment and prevention of wound infections
  • 5.2.1 Acute wound infections
  • 5.2.2 Nonhealing ulcers
  • 5.2.3 NPWT and wound infection in acute wounds and nonhealing ulcers
  • References
  • Two - Biomaterial films for woundhealing
  • 6 - Multilayer films for reducing bleeding and infection
  • 6.1 Introduction
  • 6.1.1 Chapter outline
  • 6.1.2 Impact of traumatic injuries on mortality and morbidity
  • 6.2 Polyelectrolyte multilayered films
  • 6.2.1 Current layer-by-layer strategies to control bleeding
  • 6.2.2 Current layer-by-layer strategies to control infection
  • 6.2.2.1 Postassembly impregnation
  • 6.2.2.2 Direct drug incorporation
  • 6.2.2.3 Antimicrobial surfaces
  • 6.2.3 Controlling bleeding and infection
  • 6.3 Concluding remarks
  • 6.4 Future trends
  • References
  • 7 - Collagen-based formulations for wound healing applications
  • 7.1 Introduction
  • 7.2 Collagen for wound healing
  • 7.3 Species differences in physicochemical properties of collagen-based formulations
  • 7.4 Collagen-based formulations
  • 7.4.1 Collagen films/dressings
  • 7.4.1.1 Major resources and working mechanism
  • 7.4.1.2 Collagen-based film as a carrier for hormones or bioactive proteins
  • 7.4.1.3 Collagen-based film as a carrier for stem cells
  • 7.4.2 Collagen minipellet
  • 7.4.2.1 Major resources
  • 7.4.2.2 Collagen-based minipellet as a carrier for bioactive proteins, genes, or vaccines
  • 7.4.3 Collagen shields
  • 7.4.3.1 Major resources
  • 7.4.3.2 Characteristics of collagen shields
  • 7.4.3.3 Applications of collagen shields to drug delivery
  • 7.4.4 Combination of collagen and liposomes
  • 7.4.4.1 Potential advantages of collagen-liposome formulations
  • 7.4.4.2 Applications of collagen-liposome formulations to drug delivery
  • 7.5 Future trends and new prospects
  • References
  • 8 - Cyanoacrylate tissue glues for cutaneous wound closure
  • 8.1 Wound closure and its history
  • 8.2 Competing methods for wound closure
  • 8.2.1 Surgical sutures: the current gold standard
  • 8.2.2 Adhesive tapes
  • 8.2.3 Surgical staples
  • 8.2.4 Cyanoacrylate tissue glues
  • 8.3 Cyanoacrylate tissue glues and their development for clinical practice
  • 8.3.1 Manufacturing process
  • 8.3.2 Commercially available cyanoacrylate adhesives
  • 8.3.3 Strength of cyanoacrylate adhesives
  • 8.3.4 Theoretical basis for and against the use of cyanoacrylate adhesives
  • 8.3.5 Additional product details
  • 8.4 Clinical trials
  • 8.4.1 Butyl-2-cyanoacrylate tissue glue versus sutures
  • 8.4.1.1 Closure time
  • 8.4.1.2 Wound dehiscence
  • 8.4.1.3 Wound infections
  • 8.4.1.4 Cosmetic outcome
  • 8.4.1.5 Cost
  • 8.4.1.6 Clinical trial conclusions
  • 8.4.2 Octyl-2-cyanoacrylate tissue glue versus sutures
  • 8.4.2.1 Closure time
  • 8.4.2.2 Wound dehiscence
  • 8.4.2.3 Wound infections
  • 8.4.2.4 Cosmetic outcome
  • 8.4.2.5 Cost
  • 8.4.2.6 Clinical trial conclusions
  • 8.4.3 Butyl-2-cyanoacrylate tissue glue versus octyl-2-cyanoacrylate tissue glue
  • 8.4.4 Limitations to the current studies
  • 8.5 Conclusions and future developments
  • References
  • Three - Polymer biomaterialsand dressings for woundhealing
  • 9 - Collagens in wound healing
  • 9.1 Introduction
  • 9.2 Collagen family overview
  • 9.3 Collagenopathies
  • 9.3.1 Fibril-forming collagen-caused collagenopathies
  • 9.3.2 Network-forming collagen-caused collagenopathies
  • 9.3.3 Beaded filament collagen-caused collagenopathies
  • 9.3.4 Multiplexin collagen-caused collagenopathies
  • 9.3.5 Anchoring fibril collagen-caused collagenopathies
  • 9.3.6 Transmembrane collagen-caused collagenopathies
  • 9.3.7 Acquired disorders
  • 9.4 Collagens in the skin
  • 9.4.1 Epidermal collagens
  • 9.4.2 Basement membrane and basement membrane-associated collagens
  • 9.4.3 Dermal collagens
  • 9.5 Collagens in physiological and pathological wound healing
  • 9.5.1 Physiological wound healing
  • 9.5.2 Pathological wound healing
  • 9.6 Collagenopathies and wound healing
  • 9.7 Collagen-based therapies
  • 9.8 Outlook
  • Acknowledgment
  • References
  • 10 - Microparticulate polymers and hydrogels for wound healing
  • 10.1 Introduction
  • 10.2 Wound management
  • 10.3 Hydrogel- and polymer-based dressings for wound healing
  • 10.4 Natural polymers for wound healing
  • 10.4.1 Polysaccharides
  • 10.4.2 Glycosaminoglycans
  • 10.4.3 Proteins and peptides
  • 10.5 Synthetic polymers for wound healing
  • 10.6 Micro- and nanoparticulate delivery systems in wound healing
  • 10.7 Hydrogel/polymer-based wound healing dressings in the market
  • 10.8 Clinical trials and patents related to hydrogel/polymer-based wound dressings
  • 10.9 Accelerating wound healing with active agents: future therapeutic trends
  • 10.10 Advanced PolyHealT technology for wound healing
  • 10.11 Conclusion and future perspectives
  • List of abbreviations
  • References
  • 11 - Engineered hydrogel-based matrices for skin wound healing
  • 11.1 Introduction
  • 11.2 Hydrogels attractiveness and achievements in skin wound healing
  • 11.2.1 Hydrogel features
  • 11.2.2 Bioactive/medicated hydrogels
  • 11.2.3 Bioengineered hydrogels
  • 11.3 Enhanced processing hydrogels
  • 11.4 Spongy-like hydrogels as advanced matrices for skin wound healing
  • 11.4.1 Spongy-like hydrogels
  • 11.4.2 Spongy-like hydrogels as wound dressings
  • 11.4.3 Spongy-like hydrogels for skin tissue engineering
  • 11.5 Future trends
  • References
  • 12 - Exploring the role of polyurethane and polyvinyl alcohol foams in wound care
  • 12.1 Introduction
  • 12.2 Polyurethane foams
  • 12.2.1 Composition
  • 12.2.2 Properties
  • 12.3 Polyvinyl alcohol foams
  • 12.3.1 Composition
  • 12.3.2 Properties
  • 12.4 Foams for absorbent dressings
  • 12.4.1 Moist wound healing and the role of foams
  • 12.4.2 Indications
  • 12.4.3 Cautions and contraindications
  • 12.5 Foams for negative pressure wound therapy
  • References
  • 13 - Biopolymers as wound healing materials
  • 13.1 Introduction
  • 13.2 Biopolymers as wound healing materials
  • 13.2.1 Polysaccharides
  • 13.2.1.1 Alginates
  • 13.2.2 Chitosan
  • 13.2.2.1 Structure and properties
  • 13.2.2.2 Applications in wound healing
  • 13.2.3 Pectins
  • 13.2.3.1 Structure and properties
  • 13.2.3.2 Applications in wound healing
  • 13.2.4 Hyaluronan
  • 13.2.5 Gellan gum
  • 13.3 Proteins
  • 13.3.1 Gelatin
  • 13.3.2 Collagen
  • 13.4 Conclusions and future perspectives
  • Acknowledgments
  • References
  • 14 - In situ-formed bioactive hydrogels for delivery of stem cells and biomolecules for wound healing
  • 14.1 Injectable hydrogels
  • 14.1.1 Physical cross-linking hydrogels
  • 14.1.1.1 Thermoresponsive cross-linking hydrogels
  • Natural polymers and derivatives
  • Poly(N-isopropylacrylamide) and derivatives
  • Triblock copolymer hydrogels
  • PEG-based graft copolymers
  • 14.1.1.2 pH-sensitive cross-linking hydrogels
  • 14.1.2 Chemical cross-linking hydrogels
  • 14.1.2.1 Photocrosslinked hydrogels
  • 14.1.2.2 Michael-type addition reaction hydrogels
  • 14.1.2.3 Schiff-base cross-linked hydrogels
  • 14.2 Stem cell therapy for wound healing
  • 14.2.1 Bone marrow-derived mesenchymal stem cells
  • 14.2.2 Adipose-derived stem cells
  • 14.3 In situ-formed bioactive hydrogels for wound healing
  • 14.4 Future direction
  • References
  • 15 - Polystyrene-based wound healing systems
  • 15.1 Background
  • 15.1.1 Wound dressing films
  • 15.1.2 Microspheres
  • 15.2 Polystyrene as a biomaterial
  • 15.2.1 Biocompatibility testing according to ISO guidelines
  • 15.2.1.1 Wound dressing films
  • 15.2.1.2 Microspheres
  • 15.2.2 General physicochemical properties related to biocompatibility
  • 15.2.2.1 Phase separation and glass transition temperatures
  • 15.2.2.2 Bulk mechanical properties
  • 15.2.2.3 Surface modifications and biocompatibility
  • Types of PS modifications: functionalization, grafting, and plasma radiation
  • Pore size, water permeation rate, swelling, and membrane burst
  • Topography, contact angle measurements, and cell adhesion/growth
  • Cytotoxicity, antimicrobial testing, and wound healing criteria
  • 15.3 Proposed future applications
  • 15.3.1 Nanocomposites
  • 15.3.2 Hydrogel stabilization
  • 15.4 Conclusion
  • Abbreviations
  • References
  • 16 - Silver-doped hydrogels for wound dressings
  • 16.1 Overview of wound dressings
  • 16.1.1 Requirement of wound dressings
  • 16.2 Wound healing process
  • 16.3 Hydrogels
  • 16.4 Silver
  • 16.4.1 Incorporation of silver in wound dressings
  • 16.4.1.1 Silver salts
  • 16.4.1.2 Silver compounds: SSD
  • 16.4.1.3 Silver nanoparticles
  • 16.5 Mode of action of silver
  • 16.5.1 Ionic silver
  • 16.6 Clinical use of silver-doped hydrogels
  • 16.7 Side effects of silver use
  • 16.8 Regulatory Issues
  • 16.9 Future trends in silver-doped hydrogels
  • 16.10 Conclusions
  • Conflicts of interest
  • References
  • 17 - Keratins in wound healing
  • 17.1 Introduction
  • 17.2 Keratin as a biomaterial
  • 17.3 Activity of applied keratins in wound healing
  • 17.4 Clinical application of keratins in wound healing
  • 17.5 Keratins used in biomaterial research
  • 17.6 Conclusion
  • References
  • Four - Other functional biomaterialdressings for wound healing
  • 18 - Activated protein C to treat chronic wounds
  • 18.1 Introduction
  • 18.2 Activated protein C
  • 18.2.1 APC receptors and cellular signaling
  • 18.3 Mechanisms of action of APC in wound healing phases
  • 18.3.1 Wound healing process and preclinical effects of APC
  • 18.3.2 Inhibiting inflammation
  • 18.3.3 Promoting angiogenesis
  • 18.3.4 Stimulating epithelialization
  • 18.3.5 Stabilizing endothelial and epithelial barrier
  • 18.4 Patents on APC and wound healing
  • 18.5 APC in the treatment of chronic wounds
  • 18.5.1 Lower leg ulcer in diabetic patients
  • 18.5.2 Orthopedic skin ulcers
  • 18.5.3 Pressure ulcers
  • 18.5.4 Pyoderma gangrenosum
  • 18.5.5 Summary of the clinical experience with APC
  • 18.5.6 Potential of APC in burns
  • 18.6 Conclusion
  • 18.7 Commentary on likely future trends
  • Acknowledgments
  • References
  • 19 - Clay minerals for tissue regeneration, repair, and engineering
  • 19.1 Introduction
  • 19.2 Properties and use of clays in health care and therapeutic products
  • 19.3 Clay minerals and drug interactions
  • 19.3.1 Low-molecular-weight drugs
  • 19.3.2 Peptides and proteins
  • 19.3.3 Oligonucleotides, DNA, and RNA
  • 19.4 Nanocomposites
  • 19.5 Clay minerals and hemostasis
  • 19.6 Clay minerals and cell interactions
  • 19.6.1 Biocompatibility
  • 19.6.2 Cell adhesion and proliferation
  • 19.6.3 Cell differentiation
  • 19.7 Clay mineral-based scaffolds
  • 19.8 Final remarks
  • References
  • 20 - Silver-containing dressings
  • 20.1 Introduction
  • 20.2 Bioburden, critical colonisation and biofilm and antibacterial therapies in wound management
  • 20.3 History of silver use in wound care
  • 20.4 Antimicrobial action of silver
  • 20.5 Silver dressings
  • 20.5.1 Types
  • 20.5.2 Silver dressing properties
  • 20.5.3 Silver dressings and biofilm prevention
  • 20.6 Indications for silver dressings in acute and chronic wound management
  • 20.6.1 Two-week challenge test
  • 20.6.2 Prophylactic use of silver dressings
  • 20.6.3 Use of silver dressings in surgical wounds
  • 20.7 Safety and the use of silver: systemic effects, absorption and argyria
  • 20.7.1 Effects on healing
  • 20.7.2 Use of silver dressings and resistance
  • 20.8 Clinical and health economic evidence for silver dressings
  • 20.8.1 Controversial clinical data on the use of silver dressings
  • 20.9 Future of silver dressings
  • 20.10 Conclusions
  • References
  • 21 - Antibacterial effects of titanium dioxide in wounds
  • 21.1 Introduction
  • 21.1.1 Outline and description of main themes
  • 21.1.2 Use of TiO2 in skin and wound care
  • 21.1.3 Physical, chemical, and biological characteristics of TiO2
  • 21.2 Use of TiO2 against wound infections
  • 21.2.1 Current strategies
  • 21.2.2 TiO2 thin films on wound care dressings
  • 21.3 Future trends
  • References
  • 22 - Bioactive nanofiber dressings for wound healing
  • 22.1 Introduction
  • 22.2 Wound management and preparation
  • 22.2.1 Cleansing and irrigation
  • 22.2.2 Factors affecting wound healing
  • 22.2.3 Wound closures
  • 22.3 Phases of wound healing and the healing cascade
  • 22.3.1 Hemostasis
  • 22.3.2 Inflammation
  • 22.3.3 Proliferation
  • 22.3.4 Remodeling
  • 22.4 Biomaterials for wound healing
  • 22.4.1 Natural polymers
  • 22.4.1.1 Collagen
  • 22.4.1.2 Chitosan
  • 22.4.2 Synthetic polymers
  • 22.4.2.1 Polyurethanes and their derivatives
  • 22.4.2.2 Silicone
  • 22.4.2.3 Polyglycolic acid and its copolymers
  • 22.4.2.4 Hydrogels
  • 22.5 Nanofiber dressing fabrication
  • 22.6 Drug and cell incorporation strategies
  • 22.6.1 Blending
  • 22.6.2 Surface modification
  • 22.6.3 Coaxial electrospinning or co-electrospinning
  • 22.6.4 Emulsion electrospinning
  • 22.7 Applications
  • 22.7.1 Transdermal drug delivery systems
  • 22.7.2 DNA and short interfering RNA delivery
  • 22.7.3 Growth factors
  • 22.7.4 Tissue engineering
  • 22.8 Conclusion
  • Acknowledgments
  • References
  • 23 - Nanofibrous smart bandages for wound care
  • 23.1 Advantages of nanofibers for wound healing applications
  • 23.2 Nanofiber manufacturing systems
  • 23.3 Polymers used to develop nanofibrous wound dressings
  • 23.3.1 Natural nanofibrous wound dressings
  • 23.3.1.1 Collagen nanofibers
  • 23.3.1.2 Gelatin nanofibers
  • 23.3.1.3 Chitosan nanofibers
  • 23.3.1.4 Hyaluronic acid nanofibers
  • 23.3.2 Synthetic nanofibrous wound dressings
  • 23.4 Drug delivery to wound sites using medicated nanofibers
  • 23.4.1 Delivery of antimicrobials
  • 23.4.1.1 Antibiotics
  • 23.4.1.2 Other antimicrobials
  • 23.4.2 Growth factors
  • 23.5 Conclusions and future directions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

309,40 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok