Wound Healing Biomaterials - Volume 1

Therapies and Regeneration
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 3. Juni 2016
  • |
  • 318 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100605-4 (ISBN)
 

Wound Healing Biomaterials: Volume One, Therapies and Regeneration discusses the types of wounds associated with trauma, illness, or surgery that can sometimes be extremely complex and difficult to heal.

Consequently, there is a prominent drive for scientists and clinicians to find methods to heal these types of wounds, with science increasingly turning towards biomaterials to address these challenges. Much research is now concerned with new therapies, regeneration methods, and biomaterials to assist in wound healing and healing response.

This book provides readers with a comprehensive review of the fundamentals and advances in the field of wound healing with regard to therapies and tissue regeneration. Chapters in Part One discuss fundamentals and strategies of wound healing, while Part Two reviews gene, stem cell, and drug delivery therapies for wound healing. Final chapters look at tissue regeneration strategies, making this an all-encompassing book on the topic of wound care and biomaterials.


  • Provides more systematic and comprehensive coverage of specific therapies and biomaterials for wound healing
  • Highlights research that is concerned with new therapies, regeneration methods, and the use of biomaterials to assist in wound healing and healing response
  • Presents an organized layout of the material that is carefully arranged with clear titles and comprehensive section headings
  • Looks at tissue regeneration strategies, making this an all encompassing book on the topic of wound care
  • Englisch
  • Cambridge
Elsevier Science
  • 3,87 MB
978-0-08-100605-4 (9780081006054)
0081006055 (0081006055)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Wound Healing Biomaterials - Volume 1
  • Related titles
  • Wound Healing Biomaterials: Volume 1: Therapies and Regeneration
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • One - Fundamentals and strategies for wound healing
  • 1 - Wound healing
  • 1.1 Introduction
  • 1.2 Skin layers
  • 1.3 Phases of wound healing
  • 1.3.1 Hemostasis and inflammation
  • 1.3.2 Proliferation
  • 1.3.3 Maturation and remodeling
  • 1.3.4 Wound contraction
  • 1.4 Growth factors and wound healing
  • 1.5 Acute and chronic wounds
  • 1.5.1 Acute wounds
  • 1.5.2 Chronic wounds
  • 1.5.2.1 Pressure ulcers
  • 1.5.2.2 Diabetic foot ulcers
  • 1.5.2.3 Arterial occlusive
  • 1.5.2.4 Venous stasis
  • 1.5.2.5 Lymphedema
  • 1.5.2.6 Calciphylaxis
  • 1.5.2.7 Warfarin-induced skin necrosis
  • 1.5.2.8 Infection
  • 1.6 Excessive scarring
  • 1.6.1 Hypertrophic scar
  • 1.6.2 Keloid
  • 1.6.3 Adhesions
  • 1.6.4 Pathophysiology
  • 1.6.5 Skin and scar evaluation
  • 1.6.6 Available treatment methods
  • 1.6.6.1 Intralesional injections
  • 1.6.6.2 Silicone gel
  • 1.6.6.3 Radiation
  • 1.6.6.4 Laser therapy
  • 1.6.6.5 Pressure therapy
  • 1.6.6.6 Surgery
  • 1.7 Burns
  • 1.7.1 Burn severity
  • 1.7.1.1 Superficial burns
  • 1.7.1.2 Superficial partial-thickness burns
  • 1.7.1.3 Deep partial-thickness burns
  • 1.7.1.4 Full-thickness burns
  • 1.7.1.5 Jackson zones and burn depth progression
  • 1.7.2 Types of burns
  • 1.7.2.1 Scald
  • 1.7.2.2 Grease
  • 1.7.2.3 Contact
  • 1.7.2.4 Flame
  • 1.7.2.5 Electrical contact
  • 1.7.2.6 Electrothermal (arc)
  • 1.7.2.7 Chemical
  • 1.8 Animal models
  • 1.8.1 Injury types
  • 1.8.1.1 Granuloma models
  • 1.8.1.2 Incision models
  • 1.8.1.3 Open-wound models
  • 1.8.1.4 Burn models
  • 1.8.2 Impaired healing models
  • 1.8.2.1 Malnutrition
  • 1.8.2.2 Infection
  • 1.8.2.3 Ischemia
  • 1.9 Conclusion
  • Conflict of interest
  • References
  • 2 - Growth factors in fetal and adult wound healing
  • 2.1 Introduction
  • 2.1.1 Overview of the wound healing process in adults
  • 2.2 Growth factors implicated in wound healing
  • 2.2.1 Platelet-derived growth factors
  • 2.2.2 Transforming growth factor-ß superfamily
  • 2.2.3 Epidermal growth factor family
  • 2.2.4 Fibroblast growth factors
  • 2.2.5 Insulin-like growth factors
  • 2.2.6 Vascular endothelial growth factors
  • 2.3 Differences in wound repair between fetuses and adults
  • 2.4 The interplay of fibroblasts and growth factors in fetal and adult wound healing
  • 2.4.1 Expression of growth factors and their receptors
  • 2.4.2 Fibroblast proliferation
  • 2.4.3 Fibroblast migration
  • 2.4.4 Extracellular matrix synthesis and remodeling
  • 2.4.5 Contraction
  • 2.5 Growth factors, senescence, and wound healing
  • 2.6 Conclusion
  • References
  • 3 - Targeting the myofibroblast to improve wound healing
  • 3.1 Introduction
  • 3.1.1 The stages of the wound healing process: timing is everything
  • 3.1.2 Inflammatory cells prepare the stage for fibroblasts
  • 3.2 From normal to abnormal wound healing: the myofibroblast
  • 3.2.1 Definition of the myofibroblast
  • 3.2.2 Myofibroblast markers
  • 3.2.3 Myofibroblast origins
  • 3.3 Treatment of chronic wounds: stimulating myofibroblast development
  • 3.4 Targeting the myofibroblast as an antiscarring strategy
  • 3.4.1 Blocking direct myofibroblast-promoting factors: transforming growth factor-ß1
  • 3.4.2 Blocking direct myofibroblast-promoting factors: interleukin-13 and interleukin-4
  • 3.4.3 Preventing myofibroblast formation by inhibiting transforming growth factor-ß1 cooperative factors
  • 3.4.4 Inhibiting myofibroblast formation by using myofibroblast-suppressing cytokines
  • 3.4.5 Inhibiting myofibroblast function reduces tissue deformation
  • 3.4.6 Inducing myofibroblast regression by impeding their resistance to apoptosis
  • 3.5 Conclusions
  • Acknowledgments
  • References
  • 4 - Manipulating the healing response
  • 4.1 Skin self-renewal
  • 4.2 Normal skin wound healing
  • 4.2.1 Hemostasis
  • 4.2.2 Inflammation
  • 4.2.3 Proliferation
  • 4.2.4 Remodeling
  • 4.3 Skin inflammation: care or damage
  • 4.4 Acute and chronic wounds
  • 4.4.1 Burns
  • 4.4.2 Pressure ulcers
  • 4.4.3 Diabetic foot ulcers
  • 4.5 Manipulating the healing response
  • 4.6 In vitro skin test models
  • 4.7 Conclusions
  • References
  • 5 - Manipulating inflammation to improve healing
  • 5.1 Introduction
  • 5.2 Inflammation during wound healing
  • 5.2.1 Inflammatory response during normal wound healing
  • 5.2.1.1 Cells regulating inflammation
  • 5.2.1.2 Soluble factors regulating inflammation
  • 5.2.1.3 Mechanisms of resolution of inflammation
  • 5.2.2 Dysregulated inflammatory responses leading to impaired wound healing
  • 5.2.3 Systemic conditions that influence inflammation and wound healing
  • 5.3 Manipulating inflammation to improve wound healing
  • 5.3.1 Targeting local inflammatory responses to improve healing
  • 5.3.1.1 Manipulating damage-associated signals
  • 5.3.1.2 Manipulating soluble factors and leukocyte function
  • 5.3.1.3 Cell transfer or transplantation and inflammation during wound healing
  • 5.4 Manipulating inflammation by biomaterials
  • 5.4.1 Biomaterials applied to wound healing therapy
  • 5.4.2 Biomaterials that modify inflammation to improve healing
  • 5.4.3 Influence of host disease status on the function of biomaterials
  • 5.5 Conclusions
  • 5.6 Summary
  • References
  • 6 - Modelling wound healing
  • 6.1 Introduction
  • 6.2 In vitro models of wound healing
  • 6.3 In vivo models of wound healing
  • 6.4 The rodent model
  • 6.5 The pig model
  • 6.6 Types of wounds
  • 6.6.1 Tape stripping
  • 6.6.2 Suction blister wound model
  • 6.6.3 Laser
  • 6.6.4 Minimal puncture wounds
  • 6.6.5 Split-thickness and full-thickness wounds and grafts
  • 6.6.6 Incisional and excisional wounds
  • 6.6.7 Human skin graft and skin substitute models
  • 6.6.8 In vivo models of delayed wound healing
  • 6.6.8.1 Ischaemic wounds
  • 6.6.8.2 Diabetic wound models
  • 6.6.8.3 Burn wound model
  • 6.7 Assessment of healing outcomes
  • 6.7.1 Scarring
  • 6.7.2 Contractures
  • 6.7.3 Hypertrophic scars
  • 6.7.4 Keloid scars
  • 6.7.5 Animal models for hypertrophic and keloid scars
  • 6.7.6 Skin fibrosis and models
  • 6.7.7 The effects of mechanics on healing
  • 6.7.8 Mammalian models of regeneration
  • 6.8 Translational medicine
  • 6.8.1 Incisional acute wounding models and scar revision
  • 6.8.2 Connexin 43 treatment of chronic wounds
  • 6.8.3 Likely future trends for modelling wound healing
  • References
  • Two - Therapeutics and tissue regeneration for wound healing
  • 7 - Stem cell therapies for wounds
  • 7.1 Introduction
  • 7.2 Wound healing
  • 7.3 Acute versus chronic wounds
  • 7.3.1 Defective cytokine/growth factor production
  • 7.3.2 Abnormal cell activity and impaired tissue remodeling
  • 7.4 Burns
  • 7.5 Current treatments of burn wounds and chronic wounds
  • 7.6 Stem cell therapy and sources of stem cells
  • 7.6.1 Embryonic-derived stem cells
  • 7.6.2 Bone marrow-derived mesenchymal stem cells
  • 7.6.3 Adipose-derived mesenchymal stem cells
  • 7.7 Current scaffolds for applying stem cells
  • 7.7.1 Protein-based biomaterials
  • 7.7.2 Polysaccharide-based biomaterials
  • 7.7.2.1 Alginate
  • 7.7.2.2 Chitosan and hyaluronan
  • 7.7.2.3 Pullulan
  • 7.8 Methods of applying stem cells
  • 7.8.1 Injection-based stem cell delivery
  • 7.8.2 Scaffold-based stem cell delivery
  • 7.8.3 Spray-based stem cell delivery
  • 7.9 Novel approaches in stem cell therapy
  • 7.10 Future perspectives of stem cell therapy for wounds
  • 7.11 Conclusion
  • References
  • 8 - Living cell products as wound healing biomaterials: current and future modalities
  • 8.1 Introduction
  • 8.2 History and new developments of living cell products for the treatment of problematic and chronic wounds
  • 8.3 Current living cell products on the global market
  • 8.3.1 Classification
  • 8.3.2 Temporary skin substitutes
  • 8.3.3 Fibroblast-enriched skin substitutes
  • 8.3.4 Permanent epidermal skin substitutes
  • 8.3.5 Temporary (allogeneic) epidermal substitutes
  • 8.3.6 Permanent-cultured epidermal-dermal (composite) substitutes
  • 8.3.7 Temporary cultured epidermal-dermal composites
  • 8.3.8 Temporary (allogeneic) epidermal-dermal substitutes
  • 8.3.9 Conclusions
  • 8.4 Stem cells as wound healing biomaterials
  • 8.4.1 Signaling
  • 8.4.2 Stem cell types
  • 8.4.3 Bone marrow-derived stem cells
  • 8.4.4 Adipose-derived stem cells
  • 8.4.5 Skin-derived stem cell populations
  • 8.4.6 Intravascular administration of stem cells for wound healing
  • 8.4.7 Radiation injury
  • 8.4.8 Regenerative potential
  • 8.4.9 Conclusions
  • 8.5 Biofabrication
  • 8.6 Clinical guidelines are needed
  • 8.7 The future
  • References
  • 9 - Biomaterials for dermal substitutes
  • 9.1 Introduction
  • 9.1.1 Basic compositional and functional characteristics
  • 9.1.2 Immunologic responses
  • 9.2 Biomaterials for dermal substitution
  • 9.2.1 Collagen
  • 9.2.2 Chitosan
  • 9.2.3 Silk fibroin
  • 9.2.4 Polymers
  • 9.3 Manufacturing procedures
  • 9.3.1 Freeze drying
  • 9.3.2 Hydrogel
  • 9.3.3 Electrospinning
  • 9.3.4 Printing
  • 9.4 Animal studies
  • 9.5 Future perspectives
  • References
  • 10 - Engineering the tissue-wound interface: harnessing topography to direct wound healing
  • 10.1 Introduction
  • 10.1.1 Structure and function of skin
  • 10.1.1.1 Epidermis
  • 10.1.1.2 Dermis
  • 10.1.1.3 Dermal-epidermal junction
  • 10.1.2 Need for wound healing models
  • 10.1.3 Clinical need for engineered skin substitutes
  • 10.1.4 Current strategies for wound healing models and engineered skin substitutes
  • 10.1.4.1 Autografts
  • 10.1.4.2 Dermal skin substitutes
  • 10.1.4.3 Epidermal skin substitutes
  • 10.1.4.4 Composite skin substitutes
  • 10.1.5 Importance of the physical microenvironment
  • 10.2 In vitro approaches to assessing the role of the physical microenvironment in the regulation of cellular function and wound...
  • 10.2.1 Keratinocyte signaling within the microenvironment
  • 10.2.2 Cell-cell and cell-matrix interactions within the keratinocyte microenvironment
  • 10.2.3 Physical topography of the keratinocyte microenvironment
  • 10.3 In vivo approaches to assess cellular function in wound healing
  • 10.4 Future trends
  • 10.4.1 Psoriasis models
  • 10.4.2 Epithelial cancer models
  • 10.4.3 Wound healing models
  • 10.4.4 Creating robust bioengineered skin substitutes for traumatic and chronic wounds
  • 10.5 Conclusions
  • References
  • 11 - Autologous cell-rich biomaterial (LeucoPatch) in the treatment of diabetic foot ulcers
  • 11.1 Introduction
  • 11.2 The pathogenesis of diabetic foot ulcers
  • 11.3 Recommended treatments of diabetic foot ulcers
  • 11.4 Autologous blood-derived biomaterials for wound treatment
  • 11.5 Clinical evidence for platelet-derived products in wound care
  • 11.6 LeucoPatch
  • 11.7 Clinical investigations of LeucoPatch
  • 11.8 Conclusions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok