Data Clustering

Algorithms and Applications
 
 
Chapman & Hall/CRC (Verlag)
  • erschienen am 3. September 2018
  • |
  • 652 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-315-36278-6 (ISBN)
 

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.

The book focuses on three primary aspects of data clustering:

  • Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization
  • Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data
  • Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation

In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process-including how to verify the quality of the underlying clusters-through supervision, human intervention, or the automated generation of alternative clusters.

  • Englisch
  • London
  • |
  • Großbritannien
Taylor & Francis Ltd
  • Für höhere Schule und Studium
102 schwarz-weiße Abbildungen, 36 schwarz-weiße Tabellen
978-1-315-36278-6 (9781315362786)
Charu C. Aggarwal is a Research Scientist at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996. His research interest during his Ph.D. years was in combinatorial optimization (network flow algorithms), and his thesis advisor was Professor James B. Orlin. He has since worked in the field of performance analysis, databases, and data mining. He has published over 200 papers in refereed conferences and journals, and has applied for or been granted over 80 patents. He is author or editor of nine books, including this one. Because of the commercial value of the above-mentioned patents, he has received several invention achievement awards and has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of an IBM Research Division Award (2008) for his scientific contributions to data stream research. He has served on the program committees of most major database/data mining conferences, and served as program vice-chairs of the SIAM Conference on Data Mining, 2007, the IEEE ICDM Conference, 2007, the WWW Conference 2009, and the IEEE ICDM Conference, 2009. He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering Journal from 2004 to 2008. He is an associate editor of the ACM TKDD Journal, an action editor of the Data Mining and Knowledge Discovery Journal, an associate editor of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He is a fellow of the IEEE for "contributions to knowledge discovery and data mining techniques", and a life-member of the ACM.

Chandan K. Reddy is an Assistant Professor in the Department of Computer Science at Wayne State University. He received his PhD from Cornell University and MS from Michigan State University. His primary research interests are in the areas of data mining and machine learning with applications to healthcare, bioinformatics, and social network analysis. His research is funded by the National Science Foundation, Department of Transportation, and the Susan G. Komen for the Cure Foundation. He has published over 40 peer-reviewed articles in leading conferences and journals. He received the Best Application Paper Award at the ACM SIGKDD conference in 2010 and was a finalist of the INFORMS Franz Edelman Award Competition in 2011. He is a member of IEEE, ACM, and SIAM.
Charu C. Aggarwal is a Research Scientist at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from Massachusetts Institute of Technology in 1996. His research interest during his Ph.D. years was in combinatorial optimization (network flow algorithms), and his thesis advisor was Professor James B. Orlin. He has since worked in the field of performance analysis, databases, and data mining. He has published over 200 papers in refereed conferences and journals, and has applied for or been granted over 80 patents. He is author or editor of nine books, including this one. Because of the commercial value of the above-mentioned patents, he has received several invention achievement awards and has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of an IBM Research Division Award (2008) for his scientific contributions to data stream research. He has served on the program committees of most major database/data mining conferences, and served as program vice-chairs of the SIAM Conference on Data Mining, 2007, the IEEE ICDM Conference, 2007, the WWW Conference 2009, and the IEEE ICDM Conference, 2009. He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering Journal from 2004 to 2008. He is an associate editor of the ACM TKDD Journal, an action editor of the Data Mining and Knowledge Discovery Journal, an associate editor of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He is a fellow of the IEEE for "contributions to knowledge discovery and data mining techniques", and a life-member of the ACM.

Chandan K. Reddy is an Assistant Professor in the Department of Computer Science at Wayne State University. He received his PhD from Cornell University and MS from Michigan State University. His primary research interests are in the areas of data mining and machine learning with applications to healthcare, bioinformatics, and social network analysis. His research is funded by the National Science Foundation, Department of Transportation, and the Susan G. Komen for the Cure Foundation. He has published over 40 peer-reviewed articles in leading conferences and journals. He received the Best Application Paper Award at the ACM SIGKDD conference in 2010 and was a finalist of the INFORMS Franz Edelman Award Competition in 2011. He is a member of IEEE, ACM, and SIAM.

An Introduction to Cluster Analysis <i>Charu C. Aggarwal</i>



<i>Feature Selection for Clustering: A Review <i>Salem Alelyani, Jiliang Tang, and Huan Liu</i></i>



<i><i>Probabilistic Models for Clustering <i>Hongbo Deng and Jiawei Han</i></i></i>



<i><i><i>A Survey of Partitional and Hierarchical Clustering Algorithms <i>Chandan K. Reddy and Bhanukiran Vinzamuri</i></i></i></i>



<i><i><i><i>Density-Based Clustering <i>Martin Ester</i></i></i></i></i>



<i><i><i><i><i>Grid-Based Clustering <i>Wei Cheng, Wei Wang, and Sandra Batista</i></i></i></i></i></i>



<i><i><i><i><i><i>Non-Negative Matrix Factorizations for Clustering: A Survey <i>Tao Li and Chris Ding</i></i></i></i></i></i></i>



<i><i><i><i><i><i><i>Spectral Clustering <i>Jialu Liu and Jiawei Han</i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i>Clustering High-Dimensional Data <i>Arthur Zimek</i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i>A Survey of Stream Clustering Algorithms <i>Charu C. Aggarwal</i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i>Big Data Clustering <i>Hanghang Tong and U. Kang</i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i>Clustering Categorical Data <i>Bill Andreopoulos</i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i>Document Clustering: The Next Frontier <i>David C. Anastasiu, Andrea Tagarelli, and George Karypis</i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i>Clustering Multimedia Data <i>Shen-Fu Tsai, Guo-Jun Qi, Shiyu Chang, Min-Hsuan Tsai, and Thomas S. Huang</i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i>Time Series Data Clustering <i>Dimitrios Kotsakos, Goce Trajcevski, Dimitrios Gunopulos, and Charu C. Aggarwal</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Clustering Biological Data <i>Chandan K. Reddy, Mohammad Al Hasan, and Mohammed J. Zaki</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Network Clustering <i>Srinivasan Parthasarathy and S.M. Faisal</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>A Survey of Uncertain Data Clustering Algorithms <i>Charu C. Aggarwal</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Concepts of Visual and Interactive Clustering <i>Alexander Hinneburg</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Semi-Supervised Clustering <i>Amrudin Agovic and Arindam Banerjee</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Alternative Clustering Analysis: A Review <i>James Bailey</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Cluster Ensembles: Theory and Applications <i>Joydeep Ghosh and Ayan Acharya</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Clustering Validation Measures <i>Hui Xiong and Zhongmou Li</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Educational and Software Resources for Data Clustering <i>Charu C. Aggarwal and Chandan K. Reddy</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>



<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>Index</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

47,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen