Analysis and Performance of Fiber Composites

 
 
Standards Information Network (Verlag)
  • 4. Auflage
  • |
  • erschienen am 26. September 2017
  • |
  • 576 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-39000-8 (ISBN)
 
Updated and expanded coverage of the latest trends and developments in fiber composite materials, processes, and applications
Analysis and Performance of Fiber Composites, Fourth Edition features updated and expanded coverage of all technical aspects of fiber composites, including the latest trends and developments in materials, manufacturing processes, and materials applications, as well as the latest experimental characterization methods.
Fiber reinforced composite materials have become a fundamental part of modern product manufacturing. Routinely used in such high-tech fields as electronics, automobiles, aircraft, and space vehicles, they are also essential to everyday staples of modern life, such as containers, piping, and appliances. Little wonder, when one considers their ease of fabrication, outstanding mechanical properties, design versatility, light weight, corrosion and impact resistance, and excellent fatigue strength. This Fourth Edition of the classic reference--the standard text for composite materials courses, worldwide--offers an unrivalled review of such an important class of engineering materials.
Still the most comprehensive, up-to-date treatment of the mechanics, materials, performance, analysis, fabrication, and characterization of fiber composite materials available, Analysis and Performance of Fiber Composites, Fourth Edition features:
* Expanded coverage of materials and manufacturing, with additional information on materials, processes, and material applications
* Updated and expanded information on experimental characterization methods--including many industry specific tests
* Discussions of damage identification techniques using nondestructive evaluation (NDE)
* Coverage of the influence of moisture on performance of polymer matrix composites, stress corrosion of glass fibers and glass reinforced plastics, and damage due to low-velocity impact
* New end-of-chapter problems and exercises with solutions found on an accompanying website
* Computer analysis of laminates
No other reference provides such exhaustive coverage of fiber composites with such clarity and depth. Analysis and Performance of Fiber Composites, Fourth Edition is, without a doubt, an indispensable resource for practicing engineers, as well as students of mechanics, mechanical engineering, and aerospace engineering.
4. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • Überarbeitete Ausgabe
  • 16,02 MB
978-1-119-39000-8 (9781119390008)
1119390001 (1119390001)
weitere Ausgaben werden ermittelt
BHAGWAN D. AGARWAL, PHD, is a former Vice President of engineering services at Bodycote Polymer--Broutman Laboratory, and Professor of Mechanical Engineering and Dean of Research and Development at the Indian Institute of Technology, Kanpur.
LAWRENCE J. BROUTMAN, PHD, is an independent consultant and founder of L.J. Broutman & Associates.
K. CHANDRASHEKHARA, PHD, is Professor of Mechanical and Aerospace Engineering and Director of the Composite Manufacturing Laboratory at the Missouri University of Science and Technology.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • About the Companion Website
  • Chapter 1: Introduction
  • 1.1 Definition
  • 1.2 Classification
  • 1.3 Particulate Composites
  • 1.4 Fiber-Reinforced Composites
  • 1.5 Applications of Fiber-Reinforced Polymer Composites
  • Exercise Problems
  • References
  • Chapter 2: Fibers, Matrices, and Fabrication of Composites
  • 2.1 Reinforcing Fibers
  • 2.1.1 Glass Fibers
  • 2.1.2 Carbon and Graphite Fibers
  • 2.1.3 Aramid Fibers
  • 2.1.4 Boron Fibers
  • 2.1.5 Other Fibers
  • 2.2 Matrix Materials
  • 2.2.1 Polymers
  • 2.2.2 Metals
  • 2.3 Fabrication of Fiber Composite Products
  • 2.3.1 Fabrication with Thermosetting Resin Matrices
  • 2.3.2 Fabrication with Thermoplastic Resin Matrices
  • 2.3.3 Sandwich Composites
  • 2.3.4 Fabrication with Metal Matrices
  • 2.3.5 Fabrication with Ceramic Matrices
  • Suggested Reading
  • Chapter 3: Micromechanics of Unidirectional Composites
  • 3.1 Introduction
  • 3.1.1 Nomenclature
  • 3.1.2 Volume and Weight Fractions
  • 3.2 Longitudinal Loading: Deformation, Modulus, and Strength
  • 3.2.1 Model
  • 3.2.2 Deformation under Small Loads
  • 3.2.3 Load Sharing
  • 3.2.4 Behavior beyond Initial Deformation
  • 3.2.5 Failure Mechanism and Longitudinal Strength
  • 3.2.6 Factors Influencing Longitudinal Strength and Stiffness
  • 3.3 Transverse Loading: Modulus and Strength
  • 3.3.1 Model
  • 3.3.2 Elasticity Methods of Stiffness Prediction
  • 3.3.3 Halpin-Tsai Equations for Transverse Modulus
  • 3.3.4 Transverse Strength
  • 3.4 Shear Modulus
  • 3.5 Poisson's Ratios
  • 3.6 Expansion Coefficients and Transport Properties
  • 3.6.1 Thermal Expansion Coefficients
  • 3.6.2 Moisture Absorption and Expansion Coefficients
  • 3.6.3 Transport Properties
  • 3.7 Failure of Unidirectional Composites
  • 3.7.1 Microscopic Failure Events
  • 3.7.2 Failure under Longitudinal Tensile Loads
  • 3.7.3 Failure under Longitudinal Compressive Loads
  • 3.7.4 Failure under Transverse Tensile Loads
  • 3.7.5 Failure under Transverse Compressive Loads
  • 3.7.6 Failure under In-Plane Shear Loads
  • 3.8 Typical Properties of Unidirectional Fiber Composites
  • Exercise Problems
  • References
  • Chapter 4: Short-Fiber Composites
  • 4.1 Introduction
  • 4.2 Load Transfer to Fibers
  • 4.2.1 Simplified Analysis of Stress Transfer
  • 4.2.2 Stress Distributions from Finite-Element Analysis
  • 4.3 Predicting Modulus and Strength of Short-Fiber Composites
  • 4.3.1 Average Fiber Stress
  • 4.3.2 Longitudinal and Transverse Modulus of Aligned Short-Fiber Composites
  • 4.3.3 Modulus of Randomly Oriented Short-Fiber Composites
  • 4.3.4 Longitudinal Strength of Aligned Short-Fiber Composites
  • 4.3.5 Strength of Randomly Oriented Short-Fiber Composites
  • 4.4 Influence of Matrix Ductility on Properties
  • Exercise Problems
  • References
  • Chapter 5: Macromechanics Analysis of an Orthotropic Lamina
  • 5.1 Introduction
  • 5.1.1 Orthotropic Materials
  • 5.2 Stress-Strain Relations for Unidirectional Composites
  • 5.2.1 Engineering Constants in Longitudinal and Transverse Directions
  • 5.2.2 Off-Axis Engineering Constants
  • 5.2.3 Transformation of Engineering Constants
  • 5.3 Hooke's Law and Stiffness and Compliance Matrices
  • 5.3.1 General Anisotropic Material
  • 5.3.2 Transformation of Stress, Strain, and Elasticity Constants
  • 5.3.3 Stress-Strain Relations for Orthotropic Materials
  • 5.3.4 Transversely Isotropic Material
  • 5.3.5 Isotropic Material
  • 5.3.6 Orthotropic Material under Plane Stress
  • 5.3.7 Compliance Tensor and Compliance Matrix
  • 5.3.8 Relations between Engineering Constants and Elements of Stiffness and Compliance Matrices
  • 5.3.9 Restrictions on Elastic Constants
  • 5.3.10 Transformation of Stiffness and Compliance Matrices
  • 5.3.11 Invariant Forms of Stiffness and Compliance Matrices
  • 5.4 Strengths of an Orthotropic Lamina
  • 5.4.1 Maximum-Stress Theory
  • 5.4.2 Maximum-Strain Theory
  • 5.4.3 Maximum-Work Theory
  • 5.4.4 Importance of Sign on Off-Axis Strength of Composites
  • Exercise Problems
  • References
  • Chapter 6: Analysis of Laminated Composites
  • 6.1 Classical Lamination Theory
  • 6.1.1 Introduction
  • 6.1.2 Laminate Displacements and Strains
  • 6.1.3 Laminate Stresses
  • 6.1.4 Resultant Forces and Moments
  • 6.1.5 Laminate Constitutive Relations
  • 6.2 Laminate Description System
  • 6.3 Design, Construction, and Properties of Laminates
  • 6.3.1 Symmetric Laminates
  • 6.3.2 Unidirectional, Cross-Ply, and Angle-Ply Laminates
  • 6.3.3 Quasi-isotropic Laminates
  • 6.4 Failure of Laminates
  • 6.4.1 Initial Failure
  • 6.4.2 Laminate Analysis after Initial Failure
  • 6.5 Hygrothermal Stresses in Laminates
  • 6.5.1 Concepts of Thermal Stresses
  • 6.5.2 Hygrothermal Stress Calculations
  • 6.6 Laminate Analysis through Computers
  • Exercise Problems
  • References
  • Chapter 7: Analysis of Laminated Plates and Beams
  • 7.1 Introduction
  • 7.2 Governing Equations for Plates
  • 7.2.1 Equilibrium Equations
  • 7.2.2 Equilibrium Equations in Terms of Displacements
  • 7.3 Application of Plate Theory
  • 7.3.1 Bending of Specially Orthotropic Laminates
  • 7.3.2 Buckling
  • 7.3.3 Free Vibrations
  • 7.4 Deformations Due to Transverse Shear
  • 7.4.1 First-Order Shear Deformation Theory
  • 7.4.2 Higher-Order Shear Deformation Theory
  • 7.5 Analysis of Laminated Beams
  • 7.5.1 Governing Equations for Laminated Beams
  • 7.5.2 Application of Beam Theory
  • Exercise Problems
  • References
  • Chapter 8: Advanced Topics in Fiber Composites
  • 8.1 Interlaminar Stresses and Free-Edge Effects
  • 8.1.1 Concepts of Interlaminar Stresses
  • 8.1.2 Determination of Interlaminar Stresses
  • 8.1.3 Effect of Stacking Sequence on Interlaminar Stresses
  • 8.1.4 Approximate Solutions for Interlaminar Stresses
  • 8.1.5 Summary
  • 8.2 Fracture Mechanics of Fiber Composites
  • 8.2.1 Introduction
  • 8.2.2 Fracture Mechanics Concepts and Measures of Fracture Toughness
  • 8.2.3 Fracture Toughness of Composite Laminates
  • 8.2.4 Whitney-Nuismer Failure Criteria for Notched Composites
  • 8.3 Joints for Composite Structures
  • 8.3.1 Adhesively Bonded Joints
  • 8.3.2 Mechanically Fastened Joints
  • 8.3.3 Bonded-Fastened Joints
  • Exercise Problems
  • References
  • Chapter 9: Performance of Fiber Composites: Fatigue, Impact, and Environmental Effects
  • 9.1 Fatigue
  • 9.1.1 Introduction
  • 9.1.2 Fatigue Damage
  • 9.1.3 Factors Influencing Fatigue Behavior
  • 9.1.4 Empirical Relations for Fatigue Damage and Fatigue Life
  • 9.1.5 Fatigue of High-Modulus Fiber-Reinforced Composites
  • 9.1.6 Fatigue of Short-Fiber Composites
  • 9.2 Impact
  • 9.2.1 Introduction and Fracture Process
  • 9.2.2 Energy-Absorbing Mechanisms and Failure Models
  • 9.2.3 Effect of Materials and Testing Variables on Impact Properties
  • 9.2.4 Hybrid Composites and Their Impact Strength
  • 9.2.5 Damage Due to Low-Velocity Impact
  • 9.3 Environmental-Interaction Effects
  • 9.3.1 Fiber Strength
  • 9.3.2 Matrix Effects
  • Exercise Problems
  • References
  • Chapter 10: Experimental Characterization of Composites
  • 10.1 Introduction
  • 10.2 Measurement of Physical Properties
  • 10.2.1 Density
  • 10.2.2 Constituent Weight and Volume Fractions
  • 10.2.3 Void Volume Fraction
  • 10.2.4 Thermal Expansion Coefficients
  • 10.2.5 Moisture Absorption and Diffusivity
  • 10.2.6 Moisture Expansion Coefficients
  • 10.3 Measurement of Mechanical Properties
  • 10.3.1 Properties in Tension
  • 10.3.2 Properties in Compression
  • 10.3.3 In-Plane Shear Properties
  • 10.3.4 Flexural Properties
  • 10.3.5 Interlaminar Shear Strength and Fracture Toughness
  • 10.3.6 In-Plane Fracture Toughness Tests
  • 10.3.7 Impact Tests
  • 10.3.8 Tests for Aerospace Applications
  • 10.4 Damage Identification Using Nondestructive Evaluation Techniques
  • 10.4.1 Ultrasonics
  • 10.4.2 Acoustic Emission
  • 10.4.3 X-Radiography
  • 10.4.4 Thermography
  • 10.4.5 Laser Shearography
  • 10.5 General Remarks on Characterization
  • Exercise Problems
  • References
  • Chapter 11: Emerging Composite Materials
  • 11.1 Nanocomposites
  • 11.2 Carbon-Carbon Composites
  • 11.3 Biocomposites
  • 11.3.1 Biofibers
  • 11.3.2 Wood-Plastic Composites (WPCs)
  • 11.3.3 Biopolymers
  • 11.4 Composites in "Smart" Structures
  • 11.5 Further Emerging Trends
  • Suggested Reading
  • Appendix 1: Matrices and Tensors
  • A1.1 Matrix Definitions
  • A1.2 Matrix Operations
  • A1.3 Tensors
  • References
  • Appendix 2: Equations of Theory of Elasticity
  • A2.1 Analysis of Strain
  • A2.2 Analysis of Stress
  • A2.3 Stress-Strain Relations for Isotropic Materials
  • References
  • Appendix 3: Laminate Orientation Code
  • A3.1 Standard Code Elements
  • A3.2 Positive and Negative Angles
  • A3.3 Symmetric Laminates
  • A3.4 Sets
  • A3.5 Hybrid Laminates
  • Appendix 4: Properties of Fiber Composites
  • Appendix 5: Computer Programs for Laminate Analysis
  • Appendix 6: Introduction to MATLAB
  • A6.1 Introduction: Getting Started
  • A6.2 Vectors and Matrices
  • A6.2.1 Defining Matrices
  • A6.2.2 Basic Matrix Functions
  • A6.2.3 Extracting Parts of Matrices
  • A6.2.4 Basic Matrix Operations
  • A6.3 Programming in MATLAB
  • A6.3.1 Logical and Relational Operators
  • A6.3.2 Loop and Logical Statements
  • A6.3.3 MATLAB Functions: Saving Programs
  • A6.3.4 Input/Output Functions
  • A6.3.5 Controlling the Appearance of Floating Point Number
  • A6.4 Plotting Tools
  • A6.4.1 Basic Plot Commands
  • A6.4.2 Line Styles and Colors
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

107,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok