Gold Ore Processing

Project Development and Operations
 
 
Elsevier Science (Verlag)
  • 2. Auflage
  • |
  • erschienen am 3. Mai 2016
  • |
  • 1040 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-63670-6 (ISBN)
 

Gold Ore Processing: Project Development and Operations, Second Edition, brings together all the technical aspects relevant to modern gold ore processing, offering a practical perspective that is vital to the successful and responsible development, operation, and closure of any gold ore processing operation. This completely updated edition features coverage of established, newly implemented, and emerging technologies; updated case studies; and additional topics, including automated mineralogy and geometallurgy, cyanide code compliance, recovery of gold from e-waste, handling of gaseous emissions, mercury and arsenic, emerging non-cyanide leaching systems, hydro re-mining, water management, solid-liquid separation, and treatment of challenging ores such as double refractory carbonaceous sulfides. Outlining best practices in gold processing from a variety of perspectives, Gold Ore Processing: Project Development and Operations is a must-have reference for anyone working in the gold industry, including metallurgists, geologists, chemists, mining engineers, and many others.


  • Includes several new chapters presenting established, newly implemented, and emerging technologies in gold ore processing
  • Covers all aspects of gold ore processing, from feasibility and development stages through environmentally responsible operations, to the rehabilitation stage
  • Offers a mineralogy-based approach to gold ore process flowsheet development that has application to multiple ore types
0167-4528
  • Englisch
  • Amsterdam
  • |
  • Niederlande
  • 26,26 MB
978-0-444-63670-6 (9780444636706)
0444636706 (0444636706)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Gold Ore Processing
  • Gold Ore Processing
  • Copyright
  • Contents
  • List of Contributors
  • Foreword
  • Preface to Second Edition
  • Preface to First Edition
  • Acknowledgments
  • List of Acronyms
  • List of Mineral Formulae
  • 1 - Gold - An Historical Introduction
  • 1. GOLD IN ANCIENT EGYPT
  • 2. EARLY GOLD-MINING CENTERS
  • 3. GOLD AND ALCHEMY
  • 4. USES OF GOLD
  • 4.1 Gilding
  • 4.1.1 Gilding of Metals
  • 4.1.2 Gilding of Glass and Porcelain
  • 4.2 Gold in the Glass Industry
  • 4.3 Gold Masks
  • 5. OCCURRENCE OF GOLD
  • 6. PROCESSING OF GOLD ORES
  • 6.1 Gold Panning
  • 6.2 Amalgamation
  • 6.3 Chlorination
  • 6.4 Cyanidation
  • 6.5 Refining of Gold
  • 6.6 Some Recent Trends in Gold Ore Processing
  • 7. GOLD STANDARDS AND ASSAYING
  • 8. GOLD IN CURRENCY
  • 9. BANKS
  • 10. GOLD MUSEUMS
  • SUGGESTED READING
  • I - Project Development
  • Economic Evaluation of Gold Projects
  • 2 - Overview of the Gold Mining Industry and Major Gold Deposits
  • 1. INTRODUCTION
  • 2. GOLD DISCOVERY AND DEPOSITS
  • 3. GOLD PRODUCTION
  • REFERENCES
  • 3 - Evaluation and Funding of Capital Projects in Mining
  • 1. INTRODUCTION
  • 2. EVALUATION OF CAPITAL PROJECTS IN MINING
  • 2.1 Determine the Project Financials
  • 2.1.1 Case Study: Project Financials for the Auzone Gold Mine
  • 2.1.1.1 Revenue
  • 2.1.1.2 Costs
  • 2.1.1.3 Taxes and Royalties
  • 2.1.1.4 Working Capital
  • 2.1.1.5 Capital Expenditure
  • 2.1.1.6 Calculation of the Free Cash Flow
  • 2.1.2 Calculate the Decision Criteria From the Free Cash Flow
  • 2.1.2.1 Case Study: Payback Period for the Auzone Gold Mine Project
  • 2.1.2.2 Case Study: Determine the NPV for the Auzone Gold Mine Project
  • 2.1.3 Recommend a Decision to Management
  • 3. PRINCIPLES OF PROJECT FINANCIALS AND ASSESSMENT
  • 4. COMMON ERRORS
  • 5. PROJECT RISK
  • 6. FINANCING OF THE PROJECT
  • REFERENCE
  • Feasibility Study Management
  • 4 - Sampling Procedures
  • 1. INTRODUCTION
  • 2. SAMPLING BASICS
  • 2.1 Importance of Minimizing Bias
  • 2.2 Overall Precision
  • 3. COMPONENTS OF SAMPLING ERROR
  • 3.1 Accessory Error
  • 3.2 Delimitation and Extraction Errors
  • 3.3 Weighting and Periodic Quality Fluctuation Errors
  • 3.4 Fundamental Error and Minimum Sample Mass
  • 4. PERCUSSION HOLE SAMPLING
  • 5. BLAST-HOLE SAMPLING
  • 6. PLANT SAMPLING
  • 7. SAMPLING FROM STATIONARY SITUATIONS
  • 7.1 Sampling from Stockpiles
  • 7.2 Sampling from Trucks and Railway Wagons
  • 7.3 Sampling from Holding Tanks and Vessels
  • 8. SAMPLE PREPARATION
  • 9. CONCLUSIONS
  • REFERENCES
  • 5 - Mineralogical Investigation of Gold Ores
  • 1. INTRODUCTION
  • 2. GOLD MINERALOGY
  • 2.1 Gold Minerals and Alloys
  • 2.2 Solid-Solution Gold
  • 2.3 Colloidal Gold
  • 2.4 Surface Gold
  • 2.5 Forms and Carriers of Gold
  • 3. PROCESS MINERALOGY OF GOLD
  • 3.1 Gravity Concentration
  • 3.2 Floatability of Gold Minerals and Carriers
  • 3.2.1 Size and Shape of Gold Grains
  • 3.2.2 Silver Content of Native Gold
  • 3.2.3 Activators and Depressants
  • 3.2.4 Collector Loading
  • 3.2.5 Composition of Gold Mineral
  • 3.3 Leachability of Gold Minerals
  • 3.3.1 Cyanidation in Leach Tanks
  • 3.3.2 Heap Leaching
  • 3.3.3 Other Lixiviants
  • 3.3.4 Response to Oxidative Pretreatment
  • 3.3.5 Process Mineralogy of Gold from Autoclave-CIL Circuits
  • 3.3.6 Process Mineralogy of Gold from Roaster-CIL Circuits
  • 3.3.7 Process Mineralogy of Gold from Bio-oxidized Leach Circuits
  • 3.3.8 Response to Ultrafine Grinding CIL
  • 4. METHODOLOGY FOR STUDYING GOLD MINERALS
  • 5. INSTRUMENTAL ANALYSIS FOR GOLD
  • 6. CONCLUDING REMARKS
  • ACKNOWLEDGMENT
  • REFERENCES
  • 6 - Geometallurgical Characterization and Automated Mineralogy of Gold Ores
  • 1. INTRODUCTION
  • 2. GEOMETALLURGY OVERVIEW
  • 2.1 Definition
  • 2.2 Objective
  • 2.3 Application
  • 2.4 Approach
  • 3. GEOMETALLURGICAL CHARACTERIZATION OF GOLD ORES
  • 3.1 Classification of Gold Ores and Minerals
  • 3.1.1 Gold Ore Types
  • 3.1.2 Gold Mineralogical Types
  • 3.2 Ore Characterization
  • 3.3 Impact of Mineralogy on Gold Ore Processing
  • 3.4 Gold Deportment Study
  • 3.4.1 Investigative Procedure
  • 3.4.2 Commonly Used Techniques
  • 3.4.3 Deliverables
  • 4. AUTOMATED MINERALOGY OF GOLD ORES
  • 4.1 Background
  • 4.2 System Hardware Requirement
  • 4.3 Sample Selection and Preparation
  • 4.4 Basic Measurements
  • 4.5 Advanced Features
  • 4.6 Gold and Rare Phase Search
  • 5. SUMMARY AND CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • 7 - Process Flowsheet Selection
  • 1. INTRODUCTION
  • 2. COMMINUTION PROCESS OPTIONS
  • 2.1 Overview
  • 2.2 Ore Characteristics
  • 2.3 Throughput
  • 2.4 Downstream Process Requirements
  • 2.5 Operating Cost
  • 3. FREE-MILLING ORE PROCESS OPTIONS
  • 3.1 Overview
  • 3.2 Site-Specific Issues
  • 3.3 Gravity-Recoverable Gold
  • 3.4 Treatment of High-Silver Ores
  • 4. COMPLEX ORE PROCESS OPTIONS
  • 4.1 Overview
  • 4.2 Treatment of High-Copper Ores
  • 4.3 Preg-robbing Ores
  • 4.4 Oxygen-Consuming Ores
  • 4.5 Issues Associated With Mercury
  • 5. REFRACTORY ORE PROCESS OPTIONS
  • 6. REFRACTORY PROCESS SELECTION
  • 7. FACTORS FOR CONSIDERATION IN REFRACTORY GOLD PROCESS SELECTION
  • 7.1 Gold Mineralogy
  • 7.2 Arsenic Content
  • 7.3 Sulfide Content
  • 7.4 Gangue Mineralogy
  • 7.5 Ore Variability
  • 7.6 Project Scale
  • 7.7 Incremental Gold Recovery
  • 7.8 Flotation Performance
  • 7.9 Site-Specific Environmental Considerations
  • 7.10 Project Location and Infrastructure
  • 7.11 Water Quality and Availability
  • 7.12 Power Costs
  • 7.13 Availability of Neutralization Reagents
  • 7.14 Cyanide Consumption and Costs
  • 7.15 Project Life
  • 7.16 Ability to Pilot
  • 8. DISCUSSION
  • 9. RECENT COMMERCIAL-SCALE TECHNICAL DEVELOPMENTS
  • 9.1 Comminution
  • 9.2 Ultrafine Grinding
  • 9.3 Treatment of Complex Ores
  • 9.4 Treatment of Refractory Ores
  • 9.5 Treatment of Ores With Unusual Mineralogy
  • REFERENCES
  • 8 - Metallurgical Test Work: Gold Processing Options, Physical Ore Properties, and Cyanide Management
  • 1. BACKGROUND
  • 2. ORE PREPARATION AND ASSESSMENT
  • 2.1 Mineralogical and Chemical Characterization
  • 2.2 Physical Characterization
  • 2.3 Gravity Concentration
  • 2.3.1 Conventional Jigs
  • 2.3.2 Centrifugal Jigs
  • 2.3.3 Spirals
  • 2.3.4 Mozley gravity separator
  • 2.3.5 Falcon and Knelson concentrators
  • 2.3.6 Shaking Tables
  • 2.3.7 Super-panners
  • 2.4 Cyanide Leaching
  • 2.5 Heap Leaching
  • 2.6 Recovery from Solution
  • 2.7 Cyanide Speciation
  • 2.8 Flotation
  • 2.9 Filtration and Settling
  • 2.10 Cyanide Detoxification
  • 2.11 Refractory Gold Ores
  • 2.12 Copper-Rich Ores
  • 2.13 Environmental Characterization Studies
  • REFERENCES
  • 9 - Process Simulation and Modeling
  • 1. INTRODUCTION
  • 2. BENEFITS OF SIMULATION
  • 3. CLASSIFICATION OF SIMULATION MODELS
  • 4. STEADY-STATE CONTINUOUS SIMULATION
  • 5. DYNAMIC CONTINUOUS SIMULATION
  • 6. DYNAMIC DISCRETE SIMULATION
  • 7. COMPUTATIONAL FLUID DYNAMICS
  • 8. SELECTING A GOOD SIMULATION PACKAGE
  • 9. COMMINUTION AND SIZE-SEPARATION SIMULATIONS
  • 10. GOLD EXTRACTION SIMULATIONS
  • 11. THE FUTURE OF PROCESS SIMULATION
  • REFERENCES
  • 10 - Feasibility Study Plant Design
  • 1. INTRODUCTION
  • 2. GENERAL SITE ISSUES
  • 3. CRUSHING AND ORE STORAGE
  • 3.1 Crushing Plant Throughput
  • 3.2 Operating Schedule
  • 3.3 Ore Competence
  • 3.4 Ore Material Handling Properties
  • 3.5 ROM and Product Size Required
  • 3.6 Requirements for Blending and Surge Capacity
  • 3.7 Environment
  • 4. GRINDING
  • 4.1 Single- or Twin-Stage
  • 4.2 Feed and Product Size
  • 4.3 Ore Material Handling Properties
  • 4.4 Pebble Management
  • 4.5 Power Balancing
  • 4.6 Slurry Density, Viscosity, and Specific Gravity
  • 4.7 Ball Charging
  • 4.8 Presence of Gravity Circuit
  • 4.9 Spillage Handling
  • 5. GRAVITY CONCENTRATION
  • 5.1 Gravity Device Location
  • 5.2 Product Destination
  • 5.3 Water Demand (Quality, Volume, and Pressure)
  • 5.4 Impact on Water Balance
  • 5.5 Security
  • 6. LEACHING AND ADSORPTION
  • 6.1 Particle Size
  • 6.2 Slurry Density and Viscosity
  • 6.3 Requirement for Leach Feed Thickener
  • 6.4 CIP or CIL
  • 6.5 Number of Stages
  • 6.6 Aeration Requirements
  • 6.7 Bypassing Requirements
  • 6.8 Carbon Movement
  • 6.9 Bunding Requirements
  • 6.10 Barren Carbon Return
  • 6.11 Leach Tails Thickener
  • 7. CYANIDE DETOXIFICATION AND TAILINGS DISPOSAL
  • 7.1 Residence Time
  • 7.2 Number of Stages in the Process
  • 7.3 Aeration and Agitation Requirements
  • 7.4 Materials of Construction
  • 7.5 Tailings Pumping
  • 8. ELUTION AND GOLD ROOM
  • 8.1 Type of Elution Circuit
  • 8.1.1 One or Two Columns
  • 8.1.2 Column Location
  • 8.1.3 Degree of Automation
  • 8.2 Gold Room
  • 8.2.1 Location of Gold Room
  • 8.2.2 Complexity of Gold Room Operations
  • 8.2.3 Security
  • 9. FLOTATION
  • 9.1 Flotation Slurry Density
  • 9.2 Residence Time
  • 9.3 Circuit Configuration
  • 9.4 Product Destination
  • 9.5 Wear and Corrosion
  • 9.6 Froth Tenacity
  • 9.7 Presence of an On-stream Analyzer (OSA) System
  • 10. REFRACTORY ORE PROCESSING
  • 10.1 Bio-oxidation
  • 10.2 Pressure Oxidation
  • 10.3 Roasting
  • 11. SERVICES AND UTILITIES
  • 11.1 Reagents
  • 11.2 Power
  • 11.3 Water
  • 11.4 Air/Oxygen
  • 11.5 Fuel/Diesel/Gas
  • 12. SPECIAL ISSUES FOR LARGE FACILITIES
  • 13. CONSTRUCTABILITY
  • 14. PITFALLS IN FEASIBILITY DESIGN
  • Commissioning
  • 11 - Commissioning
  • 1. INTRODUCTION
  • 2. AN OVERVIEW
  • 3. IMPACT OF PROJECT SIZE, CONTRACTING STRATEGY, AND PROCESS COMPLEXITY
  • 3.1 Contracting Strategy
  • 3.1.1 Lump Sum Turn Key Projects
  • 3.1.2 EPC Contracts
  • 3.1.3 EPCM Contracts
  • 3.2 Project Complexity
  • 3.3 Project Size
  • 4. COMMISSIONING PLANNING
  • 4.1 When Does Commissioning Start?
  • 4.2 The Planning Process
  • 4.3 Roles and Responsibilities in Plant Commissioning
  • 4.4 Packaging the Commissioning Process
  • 4.5 Input from Vendors
  • 4.6 Safety Considerations
  • 5. PRECOMMISSIONING
  • 5.1 Personnel
  • 5.2 Testing Sequence
  • 5.3 C0 Verification of Plant and Equipment
  • 5.4 C1 Dry Commissioning
  • 6. PROCESS COMMISSIONING
  • 6.1 Who Commissions the Plant?
  • 6.2 Personnel Selection
  • 6.3 C2 Wet Commissioning
  • 6.4 C3 Ore Commissioning
  • 6.5 Operations and Maintenance Training
  • 6.6 What Happens When Things Go Wrong
  • 6.7 Principal Causes of Poor Commissioning Outcomes
  • 7. PERFORMANCE VERIFICATION AND TESTING
  • 7.1 Contractor Warranties
  • 7.2 Owner Warranties
  • 7.3 Process Test Completion
  • 8. POSTCOMMISSIONING OPTIMIZATION
  • 9. DEFINITIONS
  • Acknowledgments
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Safety, Process Control and Environmental Management
  • 12 - The International Cyanide Management Code: Ensuring Best Practice in the Gold Industry
  • 1. BACKGROUND
  • 2. CONTINUING CODE DEVELOPMENT 2002-2005
  • 3. THE CYANIDE CODE
  • 3.1 Scope
  • 3.2 Principles and Standards
  • 3.3 Supporting Documentation
  • 3.4 Program Requirements
  • 3.5 ``Typical'' and ``Alternative'' Means of Compliance
  • 3.6 Auditors and Certification Audits
  • 3.7 Certification
  • 3.8 Transparency
  • 3.9 Guidance and Training
  • 4. THE CYANIDE CODE'S EVOLUTION
  • 4.1 Completeness Review of Audit Reports
  • 4.2 Certification of Cyanide Production and Transportation
  • 4.3 Amended Signatory and Certification Processes
  • 4.4 Additional Program Documentation
  • 5. IS THE CYANIDE CODE A SUCCESS?
  • 5.1 Growth of the Program
  • 5.2 Recognition and Use
  • 6. BENEFITS AND COSTS
  • 6.1 Benefits
  • 6.2 Costs
  • 7. CHALLENGES
  • REFERENCES
  • 13 - Approaches to Cyanide Code Compliance for Tailings Storage Facilities
  • 1. BACKGROUND
  • 2. THE INTERNATIONAL CYANIDE MANAGEMENT CODE
  • 2.1 Code Principle 4
  • 3. TAILINGS STORAGE FACILITIES
  • 3.1 Cyanide Toxicity
  • 3.2 Cyanide Chemistry in the Tailings Environment
  • 3.3 Wildlife Interactions with TSF
  • 4. MOVING TOWARD COMPLIANCE WITH THE CODE
  • 4.1 Code-Compliant Wildlife Monitoring Programs
  • 4.2 Code-Compliant Cyanide Monitoring Programs
  • 5. CONCLUSIONS
  • REFERENCES
  • 14 - Process Control
  • 1. INTRODUCTION
  • 2. MEASUREMENTS
  • 2.1 Solids Flow on a Conveyor Belt
  • 2.2 Water Flow Rate
  • 2.3 Slurry Flow Rate
  • 2.4 Density of Slurry in a Pipe
  • 2.5 Mill Power
  • 2.6 Slurry Levels
  • 2.7 Angle of Hydrocyclone Underflow Spray
  • 2.8 Particle Size of Milled Product
  • 2.9 Grade
  • 2.10 Froth Image Analysis
  • 2.11 Cyanide Concentration
  • 3. BASICS OF PROCESS CONTROL
  • 3.1 Actuators
  • 3.2 Noise and Signal Conditioning
  • 3.3 Process Monitoring and Fault Diagnosis
  • 3.4 Proportional-Integral Control
  • 3.5 Hierarchy
  • 3.6 Simulation
  • 4. ADVANCED CONTROL AND OPTIMIZATION
  • 4.1 Solids Feed Control
  • 4.2 Crusher Plant Control
  • 4.3 Mill Circuit Control
  • 4.4 Thickener Control
  • 4.5 Carbon-in-Pulp and Carbon-in-Leach Control
  • 4.6 Flotation
  • ACKNOWLEDGMENT
  • REFERENCES
  • Closure and Rehabilitation
  • 15 - Closure and Rehabilitation of Gold-Processing Plants
  • 1. PROCESS CLOSURE AND CLEAN-UP
  • 2. RELOCATION AND SALE - OWNERS' PERSPECTIVES
  • 3. RELOCATION AND SALE - THE MARKETING MANAGER'S PERSPECTIVES
  • 4. SCRAP, RECYCLE, AND REUSE
  • 5. CONSIDERATION OF HERITAGE VALUES BEFORE CLOSURE AND DECOMMISSIONING
  • 6. INFRASTRUCTURE REMOVAL AND SITE DECOMMISSIONING
  • 7. CLOSURE PLANT SITES - CONTAMINATION AND RISK
  • 8. FINAL LAND USE AND REHABILITATION - PLANT SITES
  • 8.1 Relinquishment
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 16 - Closure and Rehabilitation of Gold Mines with a Focus on Tailings Storage Facilities
  • 1. STANDARDS AND CLOSURE CRITERIA
  • 2. CLOSURE PREPARATION, PROVISIONING, AND PLANNING
  • 3. STAKEHOLDER ENGAGEMENT AND ACCEPTANCE OF PLANS
  • 4. DECOMMISSION PLANNING, REHABILITATION, AND CLOSURE
  • 4.1 Principal Properties and Difficulties
  • 4.2 Erosion
  • 4.3 Water Management
  • 4.4 Options in Closure and Rehabilitation Strategies
  • 4.4.1 Physical Stabilization
  • 4.4.2 Vegetative Stabilization
  • 4.4.3 Chemical Amendments
  • 4.4.4 Chemical Stabilization
  • 4.4.5 Cover Combinations
  • 4.5 Inherent Variability of Tailings Storage Facilities
  • 5. POSTCLOSURE MANAGEMENT, MONITORING, AND RELINQUISHMENT
  • 6. CONCLUSIONS
  • REFERENCES
  • II - Unit Operations
  • Comminution and Solid-Liquid Separation
  • 17 - Comminution Circuits for Gold Ore Processing
  • 1. INTRODUCTION
  • 2. COMMINUTION CIRCUIT DESIGN CONSIDERATIONS
  • 3. MINING FACTORS
  • 4. PRIMARY CRUSHING, AND STOCKPILE MANAGEMENT
  • 5. PRIMARY MILLING
  • 5.1 Crushing Circuits
  • 5.2 AG/SAG Mill Circuits
  • 5.3 Crusher/HPGR Circuits
  • 6. SECONDARY MILLING
  • 7. GOLD RECOVERY IN COMMINUTION CIRCUITS
  • 8. ALTERNATIVE GRINDING TECHNOLOGIES
  • 9. ORE SORTING
  • REFERENCES
  • 18 - Liquid-Solid Separation in Gold Processing
  • 1. INTRODUCTION
  • 2. SEDIMENTATION
  • 2.1 Thickening Background
  • 2.1.1 Optimization of Feed Systems
  • 2.1.2 Thickener Types
  • 2.1.3 Newtonian and Non-Newtonian Underflow
  • 2.1.4 Slurry Thickener Types
  • 2.1.4.1 High-Rate Thickeners
  • 2.1.4.2 Rakeless Ultra-High-Rate Thickeners
  • 2.1.4.3 High-Density Thickeners
  • 2.1.4.4 Deep-Cone Thickeners
  • 2.2 Choosing the Right Thickener for the Application
  • 2.2.1 Thickener Selection Example
  • 2.2.1.1 Preleach Thickener Example
  • 2.2.1.2 Tailings Thickener Example
  • 2.3 CCD
  • 2.4 Clarifiers
  • 3. FILTRATION
  • 3.1 Interstage Screens in CIL and CIP
  • 3.2 Carbon and Trash Screens
  • 3.3 Pregnant Solution Clarification in Merrill-Crowe Circuits
  • 3.4 Concentrate Filtration
  • 3.4.1 Pressure versus Vacuum Filters
  • 3.4.2 Types of Filters for Concentrate Slurries
  • 3.4.2.1 Filter Presses
  • 3.4.2.2 Tower Presses
  • 3.5 Tailings Filtration
  • 3.5.1 Types of Filters on Tailings Slurries
  • 3.5.1.1 Automatic Filter Presses
  • 3.5.1.2 Tower Presses
  • 3.5.1.3 Rotary Vacuum Disc Filter
  • 3.5.1.4 Horizontal-Belt Vacuum Filter
  • 4. CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • Concentration
  • 19 - Advances in Gravity Gold Technology
  • 1. INTRODUCTION
  • 1.1 Economics
  • 1.2 Recovery of GRG Using Batch Centrifuge Technology
  • 2. CENTRIFUGE UNITS
  • 2.1 Existing Practice
  • 2.2 Testwork
  • 2.3 Unit and Flowsheet Selection Based on Test Results
  • 2.4 Modeling for Unit Selection, Circuit Design, and Optimization
  • 3. GOLD ROOMS: TABLING AND INTENSIVE CYANIDATION
  • 3.1 Table-Based Recovery
  • 3.2 Intensive Cyanidation
  • 3.2.1 Consep Acacia
  • 3.2.2 Gekko InLine Leach Reactor
  • 3.2.3 Published and Independent Results
  • 3.2.4 Future Trends: Eliminating the Use of Tables for Upgrade of Gravity Concentrates
  • 4. MEASURING METALLURGICAL PERFORMANCE
  • 5. CONCLUSIONS AND FUTURE TRENDS
  • REFERENCES
  • 20 - Flotation of Gold and Gold-Bearing Ores
  • 1. BACKGROUND
  • 1.1 Mineralogy
  • 1.2 General Aspects of Gold Flotation
  • 1.3 Surface Characteristics of Pure Gold
  • 2. COLLECTORLESS FLOTATION OF NATURALLY OCCURRING GOLD
  • 3. COLLECTORS IN GOLD FLOTATION
  • 3.1 Collector Flotation of Naturally Occurring, Placer, and Liberated Gold
  • 3.2 Flotation Collectors for Gold and Gold Carriers
  • 4. FROTHERS IN GOLD FLOTATION
  • 5. ACTIVATORS IN GOLD FLOTATION
  • 5.1 Metal Salts
  • 5.2 Sulfidization
  • 6. DEPRESSION OF GOLD IN FLOTATION
  • 6.1 Selective Depression of Sulfide Minerals
  • 6.2 Depression of Sulfide Minerals With Cyanide
  • 7. FLOTATION OF GOLD AND GOLD-BEARING MINERALS
  • 7.1 Differential Flotation of Natural and Liberated Gold
  • 7.2 Flotation of Telluride Minerals
  • 7.3 Flotation of Gold-Carrying Iron Sulfides
  • 7.4 Flotation of Aurostibite, Stibnite, and Maldonite
  • 7.5 Flotation of Copper-Gold Ores
  • 8. INFLUENCE OF CONDITIONS ON GOLD FLOTATION
  • 8.1 Eh of the Flotation Pulp
  • 8.2 Flotation Gases and the Impact of Oxidation on Flotation
  • 8.3 Modification of pH for Flotation
  • 8.4 Particle Size and Shape in Flotation
  • 8.5 Flotation Kinetics
  • 8.6 Electrical Double Layer
  • 8.7 Slime Coatings and Floatable Nonsulfide Gangue
  • 8.8 Natural Metal and Organic Coatings on Gold
  • 9. FLOTATION CIRCUITS
  • 10. FLOTATION PRACTICE
  • 10.1 Refractory Gold Ores
  • 10.2 Arsenopyrite, Pyrrhotite, and Pyrite Ores
  • 10.3 Gold Ores Containing Telluride Minerals
  • 10.4 Pyritic Gold Ores
  • 10.5 Copper-Gold Ores
  • REFERENCES
  • Oxidation of Sulfide Ores and Concentrates
  • 21 - Pressure Oxidation Overview
  • 1. INTRODUCTION
  • 1.1 Thermodynamic Considerations
  • 1.2 Kinetic Considerations
  • 1.3 Partial Pressure and Agitation
  • 1.4 Environmental Considerations
  • 1.5 Pressure Hydrometallurgy History
  • 2. GOLD PRESSURE OXIDATION
  • 3. ACIDIC PRESSURE OXIDATION - WHOLE ORE
  • 3.1 Geology and Mining
  • 3.2 Autoclave Circuit
  • 4. ALKALINE PRESSURE OXIDATION-WHOLE ORE
  • 4.1 Geology and Mining
  • 4.2 Autoclave Circuit
  • 5. ACID AND ALKALINE AUTOCLAVE-COMPARISON
  • 5.1 Chemistry
  • 5.1.1 Acid Chemistry
  • 5.1.2 Alkaline Chemistry
  • 5.2 Materials of Construction
  • 5.3 Operating Cost
  • 6. ACIDIC PRESSURE OXIDATION-CONCENTRATE
  • 7. PRESSURE-OXIDATION SUMMARY
  • REFERENCES
  • 22 - Bacterial Oxidation of Refractory Gold Concentrates
  • 1. INTRODUCTION AND BACKGROUND
  • 2. BACTERIAL-OXIDATION PLANT DESIGN AND PRACTICE
  • 2.1 Concentrate Feed Factors Influencing the Rate of Oxidation
  • 2.2 Aeration and Reactors
  • 2.3 Agitation and Mechanical Reliability
  • 2.4 Bacterial-Oxidation Reagent Consumption
  • 2.5 Water Quality
  • 2.6 Bacterial-Oxidation Residue Cyanide Consumption
  • 2.6.1 Reasons for High Cyanide Consumption
  • 2.6.2 Process Concepts to Reduce Cyanide Consumption
  • 2.6.3 Prevention and Cure of Polysulfide Formation
  • 3. COMPARISON OF BACTERIAL OXIDATION WITH PROCESS ALTERNATIVES
  • REFERENCES
  • 23 - Roasting Developments - Especially Oxygenated Roasting
  • 1. RABBLE ROASTERS
  • 2. FLUIDIZED-BED ROASTERS
  • 3. CFB ROASTERS
  • 4. OXYGENATED ROASTERS
  • 5. OXYGENATED ROASTING
  • 5.1 Introduction
  • 5.2 Ore Mineralogy
  • 5.3 Roaster Chemistry
  • 5.4 Dry Grinding
  • 5.5 Roaster Operation
  • 5.6 Process Design Basis - Roaster
  • 5.7 Process Design Basis - Roaster Off-Gas Cleaning
  • REFERENCES
  • 24 - Roasting of Gold Ore in the Circulating Fluidized-Bed Technology
  • 1. HISTORY OF GOLD ORE CIRCULATING FLUIDIZED-BED ROASTING TECHNOLOGY
  • 2. FLUID-DYNAMIC BACKGROUND OF ROASTING AND PILOT TESTING
  • 2.1 Categories of Fluidization Reaction Systems
  • 2.1.1 The ``Classical'' BFB or Stationary FB
  • 2.1.2 The ``Expanded'' FB
  • 2.1.3 The ``Circulating'' FB
  • 2.1.4 The Flash Reactor
  • 2.2 Testing and Plant Design
  • 2.3 Scale-Up Approach for Fluidized-Bed Systems
  • 3. SOME ADVANCED METALLURGICAL AND MINERAL APPLICATIONS
  • 3.1 Nongold Roasting Applications
  • 3.1.1 Alumina Calcination
  • 3.1.2 Preheating, Prereduction, and Direct Reduction (DR) of Iron-Ore Fines
  • 3.1.3 Charring of High Volatile-Matter-Containing Coals with Prereduction
  • 3.1.4 Oxidation and Pretreatment of Ilmenite
  • 3.1.5 Oxidation and Reduction of Laterite Nickel Ores
  • 3.2 Roasting of Refractory Gold Ores
  • 4. PERFORMANCE OF EXISTING CFB GOLD ROASTERS
  • 4.1 Kalgoorlie Consolidated Gold Mines - Gidji, Western Australia
  • 4.1.1 Slurry-Feed System
  • 4.1.2 Roasting
  • 4.2 Placer Dome - Cortez, Nevada
  • 4.2.1 Roasting
  • 4.2.2 Gas Cleaning Operation
  • 4.3 Newmont Gold Company - Nevada
  • 4.3.1 Ore Preheating Operation
  • 4.3.2 Roasting Operation
  • 4.3.3 Gas-Cleaning Operation
  • 4.3.4 Sulfuric Acid Plant
  • 4.4 Newmont Gold Company - Minahasa, Indonesia
  • 4.4.1 Roasting Operation
  • 4.5 Resolute Mining Ltd - Syama, Mali
  • 4.6 Tongguan Zongjin Smelting Co. Two-Stage Roasting - Tongguan, China
  • 5. CONCLUSIONS
  • FURTHER READING
  • Leaching
  • 25 - Heap Leaching of Gold and Silver Ores
  • 1. INTRODUCTION
  • 1.1 What Is Heap Leaching?
  • 1.2 Why Select Heap Leaching as the Processing Method?
  • 1.2.1 Capital Risk
  • 1.2.2 Capital Is Very Difficult or Expensive to Raise
  • 1.2.3 Lack of Sufficient Reserves
  • 1.2.4 Equal or Better Percent Recovery
  • 1.2.5 Differential Recovery Is Not Sufficient to Justify Added Investment
  • 1.3 Heap Leaching Configurations
  • 1.3.1 Permanent Heaps
  • 1.3.2 Valley-Fill Heaps
  • 1.3.3 Dynamic Heaps
  • 1.4 Chemistry of Gold and Silver Heap Leaching
  • 2. FACTORS INFLUENCING HEAP LEACH EFFICIENCY
  • 2.1 Type of Ore
  • 2.1.1 Carlin-Type Sedimentary Ores
  • 2.1.2 Low-Sulfide Acid Volcanics or Intrusives
  • 2.1.3 Oxidized Massive Sulfides
  • 2.1.4 Saprolites/Laterites
  • 2.1.5 Clay-Rich Deposits
  • 2.1.6 Silver-Rich Deposits
  • 2.2 Climate Extremes
  • 2.3 Heap Permeability and Flow Efficiency
  • 2.4 Recovery Delay in Multiple Lift Heaps
  • 2.5 Solution Application Rate, Cyanide Strength, and Leach Time
  • 3. DESIGN
  • 3.1 Laboratory Testing and Control
  • 3.2 Design for Temperature Extremes
  • 3.3 Water Balance
  • 3.4 Solution Application Equipment
  • 3.5 Leach Pads and Ponds
  • 3.6 Pad Construction Cost
  • 3.7 Mining, Ore Preparation, and Stacking
  • 3.7.1 Agglomeration
  • 3.7.2 Truck Stacking
  • 3.7.3 Conveyor Stacking
  • 3.8 Recovery of Gold and Silver from Heap Leach Solutions
  • 3.9 Design Considerations for Reclamation and Closure
  • 3.10 Troubleshooting
  • 3.10.1 Permeability
  • 3.10.2 Stability
  • 3.10.3 Liner Leaks
  • 3.10.4 Poor Recovery
  • 3.10.5 Acid Production
  • 3.11 Capital Cost
  • 3.12 Operating Cost
  • 4. CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • FURTHER READING
  • 26 - Advances in the Cyanidation of Gold
  • 1. INTRODUCTION
  • 2. MECHANISM OF CYANIDATION
  • 2.1 Chemistry and Electrochemistry
  • 2.2 Reaction With Sulfide Minerals
  • 3. CONTROL STRATEGY FOR CYANIDE, OXYGEN, AND LEAD NITRATE
  • 3.1 Control of Cyanide
  • 3.2 Oxygen
  • 3.3 Lead Nitrate
  • 4. APPLICATIONS
  • 4.1 Low-Sulfide Ore
  • 4.2 Gold Ore With Pyrite and Arsenopyrite
  • 4.3 Gold Ore With Pyrrhotite
  • 4.4 Ultrafine Pyrrhotite Concentrate
  • 5. CONCLUSIONS
  • REFERENCES
  • 27 - Alternative Lixiviants to Cyanide for Leaching Gold Ores
  • 1. INTRODUCTION
  • 1.1 Stability of Alternative Lixiviants and Gold Complexes
  • 2. THIOSULFATE LEACHING
  • 2.1 Thiosulfate-Process Conditions
  • 2.2 Thiosulfate-Optimal Conditions for Leaching
  • 2.3 Thiosulfate-Current Status
  • 3. THIOUREA LEACHING
  • 3.1 Thiourea-Process Conditions
  • 3.2 Thiourea-Stabilizers
  • 3.3 Thiourea-Applications
  • 3.4 Thiourea-Alternative Systems
  • 3.5 Thiourea-Current Status
  • 4. HALIDE LEACHING
  • 4.1 Halides-Process Conditions
  • 4.1.1 Chlorine
  • 4.1.2 Bromine
  • 4.1.3 Iodine
  • 4.1.4 Mixed Halide Systems
  • 4.2 Halides-Applications
  • 4.3 Halides-Current Status
  • 5. OXIDATIVE CHLORIDE LEACH PROCESSES
  • 5.1 Oxidative Chloride Leach-Process Conditions
  • 5.1.1 PlatsolT Process
  • 5.1.2 Intec and N-Chlo Processes
  • 5.1.3 Nichromet Process
  • 5.1.4 Neomet Gold Process
  • 5.1.5 Outotec Gold Process
  • 5.1.6 Kell Process
  • 5.1.7 Other Processes
  • 5.2 Oxidative Chloride Leach-Current Status
  • 6. SULFIDE/BISULFIDE/SULFITE LEACHING
  • 6.1 Sulfide/Bisulfide/Sulfite Leaching-Process Conditions
  • 6.1.1 Nitrogen Species Catalyzed Pressure Leaching Process
  • 6.2 Sulfide/Bisulfide/Sulfite Leaching - Applications
  • 6.3 Sulfide/Bisulfide/Sulfite Leaching-Current Status
  • 7. AMMONIA LEACHING
  • 7.1 Ammonia-Process Conditions
  • 7.2 Ammonia-Applications
  • 7.3 Ammonia-Current Status
  • 8. BACTERIAL AND NATURAL ACID LEACHING
  • 8.1 Bacterial and Natural Acid-Conditions
  • 8.2 Bacterial and Natural Acid-Current Status
  • 9. THIOCYANATE LEACHING
  • 9.1 Thiocyanate-Conditions
  • 9.2 Thiocyanate-Applications
  • 9.3 Thiocyanate-Current Status
  • 10. RECOVERY PROCESSES
  • 10.1 Cementation and Precipitation Methods
  • 10.2 Adsorbent Materials
  • 10.2.1 Activated Carbon
  • 10.2.2 Ion-Exchange Resins
  • 10.2.3 Plant and Other Adsorption Media
  • 10.3 Solvent Extraction
  • 11. ECONOMIC EVALUATION
  • 12. ENVIRONMENTAL CONCERNS
  • 13. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 28 - Thiosulfate as an Alternative Lixiviant to Cyanide for Gold Ores
  • 1. INTRODUCTION
  • 2. THIOSULFATE LEACHING CHEMISTRY
  • 2.1 Kinetics of Gold Leaching
  • 3. COPPER AMMONIACAL THIOSULFATE SYSTEM
  • 3.1 Role of Oxygen and Impact on Copper Activity
  • 3.2 Decomposition of Thiosulfate and Generation of Polythionates
  • 3.2.1 Stability of Thiosulfate
  • 3.2.2 Degradation of Polythionates
  • 3.2.3 Effect of Sulfide and Sulfite
  • 3.3 Passivation of Gold
  • 3.4 Silver Leaching
  • 3.5 Effect of pH Value
  • 3.6 Effect of Temperature
  • 4. INFLUENCE OF MINERALOGY ON THIOSULFATE LEACHING
  • 4.1 Deportment of Gold and Gold Composition
  • 4.2 Sulfide Minerals
  • 4.2.1 Sulfide Dissolution
  • 4.2.2 Gold Precipitation
  • 4.2.3 Catalytic Effect of Sulfides on Thiosulfate Decomposition
  • 4.2.4 Galvanic Interaction of Sulfides on Gold Dissolution
  • 4.3 Effect of Metallic Iron and Ferric Ion on Gold Recovery
  • 4.4 Sesquioxide and Clay Minerals
  • 4.5 Stability and Adsorption of Precious Metals and Various Reagents
  • 4.5.1 Gold Adsorption on Mineral Surfaces
  • 4.5.2 Adsorption of Polythionates on Mineral Surfaces
  • 4.5.3 Preferential Adsorption of Copper
  • 5. IMPACT OF CERTAIN CATIONS AND ANIONS SPECIES ON PRECIOUS METAL DISSOLUTION AND THIOSULFATE DEGRADATION
  • 5.1 Involvement of Some Cations in the Anodic Reaction of Gold Dissolution
  • 5.2 Impact of Certain Anions in Reducing Thiosulfate Consumption
  • 5.3 Dissolution of Other Cations and Effect on Leaching
  • 5.4 Role of Certain Coligands during the Anodic Oxidation of Gold
  • 5.5 Other Complexing Reagents
  • 6. ALTERNATIVE OXIDANT THIOSULFATE SYSTEMS
  • 6.1 High-Pressure Oxygen Thiosulfate System
  • 6.2 Ferric Ion Thiosulfate Systems
  • 6.3 Copper-Calcium Thiosulfate Leach System
  • 6.4 Other Transitional Metal Oxidants
  • 7. RECOVERY PROCESSES
  • 7.1 Cementation Methods
  • 7.2 Zinc Cementation
  • 7.3 Copper Cementation
  • 7.4 Reductive Precipitation
  • 7.5 Sulfide Reduction
  • 7.6 Adsorbent Materials
  • 7.6.1 Adsorption on Carbon
  • 7.6.2 Adsorption on Resin
  • 7.6.3 Resin Elution Processes
  • 7.6.4 Electrowinning
  • 7.7 Solvent Extraction
  • 8. APPLICATION OF THIOSULFATE TO TREATMENT OF ORES
  • 8.1 Oxide Ores
  • 8.2 Heap Leaching of Carbonaceous Preg-robbing Ores
  • 8.3 Thiosulfate Leaching of Various Pressure-Oxidized Residues
  • 8.4 Copper-Gold Ore and Concentrate Studies
  • 8.5 Placer Dome Milled Ammonium Thiosulfate (MATS) Process
  • 8.6 In Situ Generation of Thiosulfate for Leaching Gold
  • 8.7 Barrick's Calcium Thiosulfate-Leaching Commercial Plant
  • 9. ECONOMIC CONSIDERATIONS
  • 9.1 Equipment Costs
  • 9.2 Instrumentation and Water Quality
  • 9.3 Other Considerations
  • 10. ENVIRONMENTAL ISSUES
  • 11. SUMMARY AND CONCLUSIONS
  • REFERENCES
  • 29 - Chloride as an Alternative Lixiviant to Cyanide for Gold Ores
  • 1. INTRODUCTION
  • 1.1 History
  • 1.2 Chemistry
  • 2. CHLORIDE-BASED PROCESSES FOR GOLD LEACHING
  • 3. COMMERCIAL CHLORINATION LEACHING PLANTS
  • 4. OUTLOOK FOR DIRECT CHORIDE-BASED LEACHING OF GOLD
  • REFERENCES
  • Gold Recovery
  • 30 - Carbon-in-Pulp
  • 1. INTRODUCTION
  • 1.1 Early History of Carbon Use in Gold Recovery
  • 1.2 The Modern Era of CIP
  • 2. ACTIVATED CARBON
  • 2.1 Carbon Assessment Methods
  • 2.1.1 Kinetic Activity
  • 2.1.2 Attrition Resistance (Hardness)
  • 2.1.2.1 Ball-Pan Hardness
  • 2.1.2.2 Wet-Attrition Resistance
  • 2.1.3 Particle-Size Distribution
  • 2.1.4 Apparent Density
  • 2.1.5 Surface-Area Determination
  • 2.1.5.1 BET Technique
  • 2.1.5.2 Iodine Number
  • 2.1.5.3 Carbon-Tetrachloride Activity
  • 2.1.6 Ash Content
  • 2.1.7 Moisture Content
  • 2.1.8 Platelet Content
  • 3. MODELING CIP CIRCUITS
  • 3.1 Nicol-Fleming Model
  • 3.2 Stange Model
  • 3.3 Liebenberg-Van Deventer Model
  • 4. CIRCUIT DESIGN AND CARBON MANAGEMENT CONSIDERATIONS
  • 4.1 Number of Adsorption Stages
  • 4.2 Pump Cells and Carousel Circuits
  • 4.3 Carbon Residence Time
  • 4.4 Effect of Carbon Activity on Soluble Gold Loss and Carbon Inventory
  • 4.5 Effect of Carbon Distribution on Soluble Gold Loss
  • 4.6 Effect of Barren-Carbon Grade on Soluble Gold Loss
  • 4.7 Carbon Usage Rate
  • 4.8 Target Gold Loading on Carbon
  • 4.9 Gold-Loading Distribution
  • 4.10 Carbon Transfer
  • 4.11 Control and Measurement of Carbon Concentration in CIP Circuits
  • 4.12 Carbon Regeneration
  • 5. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 31 - Zinc Cementation
  • 1. INTRODUCTION
  • 2. CHEMISTRY
  • 3. HISTORY
  • 4. APPLICATION
  • 4.1 High Silver:Gold Ratio
  • 4.2 High Mercury Content
  • 4.3 Other Applications
  • 5. BASIC FLOWSHEET
  • 6. EQUIPMENT
  • 6.1 Clarification
  • 6.2 Deaeration
  • 6.3 Zinc Cementation
  • 6.4 Precipitate Filtration
  • 6.5 Precipitate Handling and Treatment
  • 7. DESIGN CRITERIA
  • 8. OPERATIONS
  • 8.1 South Africa
  • 8.2 Canada
  • 8.3 United States
  • 8.4 Mexico
  • 8.5 South America
  • 8.6 Other
  • 9. ADVANCES
  • REFERENCES
  • 32 - Resin-in-Pulp and Resin-in-Solution
  • 1. INTRODUCTION
  • 2. SOLUTION CHEMISTRY OF CYANIDED GOLD PULPS
  • 3. DEVELOPMENT OF GOLD-SELECTIVE RESINS
  • 3.1 Strong-Base Resins
  • 3.2 Medium-Base Resins
  • 3.3 Weak-Base Resins
  • 3.4 Other Resin Types
  • 4. ELUTION OF DIFFERENT RESIN TYPES
  • 4.1 Elution of Minix Strong-Base Resin
  • 4.2 Elution of AM-2B Resin
  • 4.3 Elution of AuRIX® Resin
  • 4.4 Elution of Conventional Strong-Base Resins (A161L, A161RIP, Vitrokele 912)
  • 5. RESIN EVALUATION TECHNIQUES
  • 5.1 Mini-Column Loading Tests
  • 5.2 Countercurrent Ion-Exchange Tests
  • 5.3 Equilibrium Isotherm
  • 5.4 Kinetics
  • 5.5 Simulation of an Adsorption Circuit
  • 5.6 Resin Strength and Durability
  • 6. RELATIVE COST COMPARISON OF RIP VERSUS CIP
  • 7. RECOVERY OF GOLD FROM PREG-ROBBING ORES
  • 8. RESIN-IN-SOLUTION
  • 8.1 Minix
  • 8.2 AuRIX®
  • 9. RIP PLANTS
  • 9.1 Golden Jubilee Mine, South Africa
  • 9.2 Penjom Gold Mine, Malaysia
  • 9.3 Muruntau, Uzbekistan
  • 9.4 Barbrook Gold Mine, South Africa
  • 10. CONCLUSIONS
  • REFERENCES
  • 33 - Electrowinning
  • 1. BACKGROUND
  • 2. HISTORICAL DEVELOPMENTS
  • 3. ELECTROWINNING CELL DESIGN
  • 3.1 Early Designs
  • 3.2 Cell Types in Use in Australia
  • 3.3 Cells for Pressurized Elution Circuits
  • 3.4 Cathode Design
  • 3.4.1 Multiple-Cathode Parallel-Plate Electrowinning Cells
  • 3.4.2 Wound Single-Layer Wrapped Cathodes
  • 3.4.3 Woven Stainless-Steel Cathodes - Plate and Replate Cells
  • 3.5 Pressure-Cleaned Systems for Stainless-Steel Cathodes
  • 3.5.1 Pressure-Jetting Bullion-Sludge Removal
  • 3.5.2 Gangued Cathode and Anode Arrays
  • 3.6 Ultrasonic Bullion Removal
  • 3.7 Pressurized Electrowinning Cells
  • 3.8 Rotating-Cathode Electrowinning Cells with In-Cell Pressure Bullion Removal
  • 4. SPECIAL APPLICATIONS
  • 4.1 Electrowinning from Gravity Concentrates
  • 4.2 Direct Electrowinning from Biologically Oxidized Filtered Leach Solutions
  • 5. KEY ASPECTS OF ELECTROWINNING CELL DESIGN AND OPERATION
  • 5.1 Gold to Steel-Wool Loading Ratio
  • 5.2 Limiting Linear Velocity
  • 5.3 Cell Flow Rate and Required Cross-Sectional Area
  • 5.4 Current Requirements
  • 5.5 Current-Density Limitations
  • 5.6 Impact of Type of Elution System
  • 5.7 Number of Cathodes Required
  • 5.8 Solution Bypass
  • 5.9 Plate Attachment and the Role of Silver and Copper
  • 5.10 Electrical Connections (Resistivity, Material Selection, and Fire)
  • 5.11 Automatic Current-Control Rectifiers
  • 5.12 Health Hazards
  • ACKNOWLEDGMENT
  • REFERENCES
  • 34 - Refining of Gold- and Silver-Bearing DorE
  • 1. INTRODUCTION
  • 2. INDUSTRY STRUCTURE AND THE GOLD AND SILVER REFINING BUSINESS
  • 2.1 Comparison of Gold and Silver Refining with Platinum-Group Metals Refining
  • 2.2 Industry Components and Participants
  • 2.3 Operations of a Precious Metals Refiner
  • 2.4 Business Transactions of a Precious Metals Refiner
  • 3. GOLD AND SILVER DORE
  • 4. REFINING OF HIGH-GOLD DORE MATERIALS
  • 4.1 Prerefining of Gold
  • 4.1.1 Hydrometallurgical Prerefining of Gold - The Parting Process
  • 4.1.2 High-Temperature Chlorination - The Miller Process
  • 4.2 Electrorefining of Gold
  • 4.3 Chemical Dissolution
  • 4.3.1 Aqua Regia Dissolution of Gold
  • 4.3.2 Other Dissolution Systems
  • 4.4 Reduction of Gold from Solution
  • 4.5 Use of Solvent Extraction
  • 5. REFINING OF HIGH-SILVER DORE MATERIALS
  • 5.1 Prerefining of Silver
  • 5.1.1 Hydrometallurgical Prerefining of Silver by Sulfuric Acid Leaching
  • 5.1.2 Pyrometallurgical Prerefining of Silver
  • 5.1.2.1 Reverberatory Furnace
  • 5.1.2.2 Slagging Furnace
  • 5.1.2.3 Top-Blown Rotary Converter
  • 5.2 Electrorefining of Silver
  • 5.3 Dissolution and Precipitation
  • 6. DELETERIOUS ELEMENTS IN REFINING OF GOLD AND SILVER DORE
  • 7. FUTURE DEVELOPMENTS IN DORE REFINING
  • ACKNOWLEDGMENT
  • REFERENCES
  • Disposal of Residues
  • 35 - Cyanide Treatment: Physical, Chemical, and Biological Processes
  • 1. INTRODUCTION
  • 2. CYANIDE MANAGEMENT PLAN
  • 3. ANALYSIS OF CYANIDE
  • 4. BIOLOGICAL CYANIDE DESTRUCTION PROCESSES
  • 5. CHEMICAL TREATMENT PROCESSES
  • 5.1 Alkaline Chlorination Process
  • 5.2 Sulfur Dioxide and Air Process
  • 5.3 Copper-Catalyzed Hydrogen Peroxide Process
  • 5.4 Caro's Acid Process
  • 5.5 Iron-Cyanide Precipitation
  • 5.6 Activated Carbon Polishing
  • 5.7 Other Cyanide-Treatment Processes
  • 6. NATURAL CYANIDE ATTENUATION
  • 7. TREATMENT OF CYANIDE-RELATED COMPOUNDS
  • 7.1 Thiocyanate Treatment
  • 7.2 Cyanate Treatment
  • 7.3 Ammonia Treatment
  • 7.4 Nitrate Treatment
  • 8. EFFLUENT AND DISCHARGE STRATEGIES
  • 8.1 Effluent Standards
  • 8.2 Water Management
  • 8.3 Water Quality Assessment
  • 8.4 Discharge Strategies
  • 9. SUMMARY
  • REFERENCES
  • 36 - Cyanide Recovery
  • 1. INTRODUCTION
  • 2. THEORETICAL BACKGROUND
  • 3. PRACTICAL CONSIDERATIONS
  • 4. PROCESS ALTERNATIVES
  • 4.1 Direct Recovery without Preconcentration, by Tailings-Solution Recycling
  • 4.2 Direct Recovery by the SART Process
  • 4.3 Direct Recovery by the AVR Process
  • 4.4 Indirect Recovery with Preconcentration by Ion-Exchange Resins
  • 4.4.1 Free Cyanide Recovery by RIP Using Zinc Precomplexation
  • 4.4.2 Cyanide Recovery by RIP Extraction of Copper Cyanide
  • 4.4.2.1 The AuGMENT Process
  • 4.4.2.2 The Hannah Process
  • 5. ENVIRONMENTAL, SOCIAL, HEALTH, AND SAFETY BENEFITS OF CYANIDE RECYCLING
  • 6. CONCLUSIONS
  • REFERENCES
  • 37 - Tailings Storage Facilities
  • 1. EVOLUTION OF TAILINGS MANAGEMENT
  • 2. PAST FAILURES
  • 3. CONSTRAINTS AND DRIVERS
  • 3.1 Public Perceptions and Politics
  • 3.2 Legislation
  • 4. TAILINGS CHARACTERIZATION
  • 4.1 Physical Characterization
  • 4.1.1 Particle Size Distribution
  • 4.1.2 Atterberg Limits
  • 4.1.3 Settling and Drying Properties
  • 4.1.4 Permeability
  • 4.1.5 Consolidation Behavior
  • 4.1.6 Shear Strength
  • 4.1.7 Beach Evaporation
  • 4.1.8 Rheology
  • 4.1.9 Piezocone Investigations
  • 4.2 Geochemical Characterization
  • 4.2.1 Static Testing
  • 4.2.2 Kinetic Testing
  • 5. RISK-BASED DESIGN
  • 6. RECENT ADVANCES
  • 7. TAILINGS WATER MANAGEMENT
  • 7.1 Drivers
  • 7.2 ``Dry'' Tailings
  • 7.3 Central Thickened Discharge
  • 7.4 Underground Backfill
  • 7.5 In-pit Storage
  • 7.6 Lining of TSFs
  • 7.7 Management of Acidic and Metalliferous Drainage
  • 8. TSF CLOSURE AND COMPLETION
  • 8.1 General Considerations
  • 8.2 Safety
  • 8.3 Stability
  • 8.4 Aesthetic Acceptability
  • 9. FUTURE POSSIBILITIES
  • 9.1 Paste
  • 9.2 Codisposal and Comingling of Mine Wastes
  • 9.3 Geotubes
  • 9.4 High Sulfur Management
  • 9.5 Chemical Modification
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 38 - Water Management in Gold Ore Processing
  • 1. INTRODUCTION
  • 2. CHARACTERIZATION OF PREDEVELOPMENT CONDITIONS
  • 2.1 General Considerations
  • 2.2 Natural and Predevelopment Water Quality
  • 2.3 Number of Predevelopment Monitoring Stations
  • 2.4 Engineering Aspects of the Predevelopment Characterization Program
  • 3. WATER SUPPLY
  • 3.1 Potential Sources of Water
  • 3.2 Characterization of the Resource
  • 3.3 Development Schedule
  • 3.4 Monitoring
  • 3.4.1 Monitoring of a Groundwater Source
  • 3.4.2 Monitoring of a Surface-Water Source
  • 3.4.3 Provision of On-site Storage
  • 3.5 Recent Approaches
  • 4. TAILING HYDROLOGY
  • 4.1 General
  • 4.2 Tailings Storage Facility Water Balance
  • 4.3 Water within the Dam Structures
  • 4.4 Characterization of Foundation Materials
  • 4.4.1 Bedrock
  • 4.4.2 Superficial/Alluvial Materials
  • 4.5 Protection of Downgradient Groundwater and Surface Waters
  • 4.6 Monitoring
  • 5. HEAP-LEACH HYDROLOGY
  • 5.1 Introduction
  • 5.2 Project Planning
  • 5.3 Water Conservation
  • 5.4 Containment and Monitoring
  • 6. SITE-WIDE WATER BALANCE
  • 6.1 Key Objectives
  • 6.2 Water-Balance Components
  • 6.3 Contact versus Noncontact Water
  • 6.4 Simulation of the Water Balance
  • 6.5 Water Quality Planning
  • 6.6 Monitoring of the Water-Balance Circuit
  • 7. DISCHARGE OF EXCESS WATER FROM THE SITE
  • 7.1 General Planning
  • 7.2 Operating Practices
  • 7.3 Alternatives Analysis
  • 8. STORMWATER MANAGEMENT
  • 8.1 Design Events
  • 8.2 BMPs
  • 8.3 Roadways
  • 8.4 Stormwater Conveyance Systems
  • 8.5 Erosion and Sediment Control
  • 9. SURFACE WATER AND GROUNDWATER PROTECTION
  • 9.1 Overall Goals of the Monitoring Program
  • 9.2 Layout of the Monitoring Program
  • 9.2.1 Groundwater
  • 9.2.2 Surface Water
  • 9.3 Monitoring Suites
  • 9.4 Monitoring Frequency
  • 10. SUMMARY AND CONCLUSIONS
  • ACKNOWLEDGEMENTS
  • REFERENCES
  • 39 - Retreatment of Gold Residues
  • 1. INTRODUCTION
  • 2. EVALUATION PHASES
  • 2.1 Scouting
  • 2.2 Prefeasibility Study
  • 3. SAMPLING AND METALLURGICAL TESTWORK
  • 3.1 Sample Preparation
  • 3.2 Assaying
  • 3.3 Metallurgical Testwork
  • 4. EVALUATION
  • 4.1 Flowsheet Development
  • 4.2 Tonnage and Grade Calculation
  • 4.3 Size Distribution
  • 4.4 General Observations
  • 4.5 Financial Evaluation
  • 4.6 Infrastructure Requirements
  • 4.7 Environmental Costs
  • 4.8 Operating Costs
  • 5. OPERATIONAL PHASE
  • 5.1 Reclamation Methods Overview
  • 5.2 Slime Reclamation by Hydraulic Re-Mining
  • 5.2.1 Starting a Reclamation Operation
  • 5.2.2 Reclamation Technique
  • 5.2.3 Monitor Guns
  • 5.2.4 Screening
  • 5.2.5 Pump Stations
  • 5.2.6 Pipelines
  • 5.2.7 Water Balance
  • 5.2.8 Reclamation Guidelines
  • 5.3 Sand Reclamation and Milling
  • 5.3.1 Hydraulic Reclamation
  • 5.3.2 Mechanical Reclamation of Sand
  • 5.3.3 Milling of Sand
  • 6. METALLURGICAL TREATMENT
  • 6.1 Slime Treatment with No Pyrite Recovery
  • 6.2 Slime Treatment with Pyrite Recovery
  • 6.3 Sand Treatment
  • 7. ENVIRONMENTAL REHABILITATION
  • 8. PROCESS FLOWSHEETS
  • ACKNOWLEDGMENT
  • FURTHER READING
  • 40 - Practical Considerations in the Hydro Re-Mining of Gold Tailings
  • 1. INTRODUCTION
  • 2. RECLAMATION METHODS
  • 2.1 Truck and Shovel Reclamation
  • 2.2 Mechanical Reclamation
  • 2.3 Dredger Reclamation
  • 2.4 Hydro Reclamation
  • 3. STARTING UP AN RE-MINING SITE
  • 3.1 Residue Characterization
  • 3.2 Re-Mining Plan
  • 3.3 Stability Assessment
  • 3.4 Environmental Protection and Water Management
  • 3.5 Designing for Closure
  • 4. HYDRAULIC RE-MINING
  • 4.1 Bottom Up or Top Down
  • 4.2 Bench Heights and Interbench Slopes
  • 4.3 Equipment Selection
  • 4.4 Pressure and Flow Requirements
  • 4.5 Solids Concentration
  • 4.6 Floor Slope
  • 4.7 Screening
  • 4.8 Receiving Station
  • 4.9 Reticulation Requirements
  • 4.10 High-Pressure Water and Slurry Pump Stations
  • 4.11 Operational Readiness
  • 5. CONCLUSIONS
  • 5.1 Method Selection
  • 5.2 Execution
  • 41 - Developments in Arsenic Management in the Gold Industry
  • 1. INTRODUCTION
  • 1.1 Anthropogenic Arsenic Sources
  • 1.2 Anthropogenic Arsenic Release Due to the Gold Industry
  • 2. CHEMISTRY AND PRECIPITATION OF ARSENIC
  • 2.1 Thermodynamics
  • 2.2 Solubility of Various Arsenic Precipitates and Adsorbents
  • 2.2.1 Calcium Precipitates
  • 2.2.2 Iron Precipitates
  • 2.2.3 Other Precipitates
  • 3. STABILIZATION PROCESSES
  • 4. STABILITY TESTING AND REGULATORY REQUIREMENTS
  • 5. CONCLUSIONS
  • REFERENCES
  • 42 - Mercury in Gold Processing
  • 1. INTRODUCTION
  • 2. MERCURY DEPORTMENT IN GOLD PROCESSING
  • 2.1 Oxidative Pretreatment
  • 2.2 Leaching and Carbon Adsorption
  • 2.3 Elution
  • 2.4 Electrowinning
  • 2.5 Retorting
  • 2.6 Tailings
  • 3. MERCURY IN ARTISANAL AND SMALL-SCALE MINING
  • 4. MERCURY ANALYSIS
  • 4.1 Liquids and Solids
  • 4.2 Gaseous Streams
  • 5. MERCURY CONTROL TECHNOLOGIES FOR GASEOUS STREAMS
  • 6. LEGAL FRAMEWORK
  • 6.1 Minamata Convention
  • 6.2 Basel Convention
  • 6.3 U.S. Mercury Export Ban and Its Implications
  • 6.4 U.S. Air Emissions
  • 6.5 European Regulations
  • 6.6 Canada
  • 6.7 Other Countries
  • 7. STABILIZATION OF ELEMENTAL MERCURY
  • 8. ABOVE-GROUND STORAGE OF ELEMENTAL MERCURY
  • 8.1 Containers
  • 8.2 Storage Location and Construction
  • 8.3 Security
  • 8.4 Monitoring
  • 8.5 Occupational Safety
  • 8.6 Emergency Response and Incident Reporting
  • 9. DISPOSAL - UNDERGROUND
  • 10. CONCLUSIONS
  • REFERENCES
  • III - Case Study Flowsheets
  • Polymetallic Ores
  • 43 - Gold-Copper Ores
  • 1. INTRODUCTION
  • 2. CHEMISTRY OF COPPER CYANIDES
  • 2.1 Solubility of Copper Minerals in Cyanide Solutions
  • 2.2 Copper-Cyanide Complexes
  • 2.3 Reactions of Copper Minerals in Cyanide Solutions
  • 2.4 Dissolution of Gold and Copper in Cyanide Solutions
  • 2.5 Preg-Robbing of Gold onto Copper and Copper Minerals
  • 2.6 Effect of Copper-Cyanide Complexes on the Gold Cyanidation Process
  • 2.7 Effect of Sulfides with Copper on the Gold Cyanidation Process
  • 3. GOLD RECOVERY
  • 3.1 Merrill-Crowe Process
  • 3.2 CIP and CIL Process
  • 4. PROCESSES FOR TREATING HIGH-COPPER GOLD ORES
  • 4.1 Reduce Soluble Copper in the Feed to Cyanidation
  • 4.1.1 Selective Mining
  • 4.1.2 Flotation
  • 4.1.3 Preleaching of Copper
  • 4.2 Sceresini Process
  • 4.3 Minimizing Copper Solubility during Cyanidation
  • 4.3.1 Leaching with Copper Tri-cyanide
  • 4.3.2 Use of Ammonia
  • 5. COPPER AND CYANIDE RECOVERY PROCESSES
  • 5.1 Solid-Liquid Separation
  • 5.2 HCN Volatilization
  • 5.2.1 CyanisorbT Process
  • 5.3 Activated Carbon
  • 5.4 Ion-Exchange Resins
  • 5.4.1 VitrokeleT
  • 5.4.2 Elutech Process
  • 5.4.3 Augment Process
  • 5.4.4 Hannah Process
  • 5.4.5 CSIRO Process
  • 5.5 Solvent Extraction
  • 5.6 Membranes
  • 6. CYANIDE RECOVERY FROM COPPER CYANIDE
  • 6.1 Copper Precipitation
  • 6.2 Cutech Process
  • 6.3 Sulfide-Precipitation Processes
  • 6.3.1 MNR Process
  • 6.3.2 Sulfidization-Acidification-Recycling-Thickening (SART) Process
  • 6.4 Electrowinning
  • 6.5 Polychelating Polymers
  • 7. ALTERNATIVE LIXIVIANTS
  • REFERENCES
  • 44 - Case Study Flowsheets: Copper-Gold Concentrate Treatment
  • 1. INTRODUCTION
  • 2. BACKGROUND OF SULFIDE LEACHING
  • 3. COPPER-GOLD CONCENTRATE TREATMENT PROCESSES
  • 3.1 Total Pressure-Oxidation Process
  • 3.2 BIOCOPT Process
  • 3.3 Outokumpu HydrocopperT Process
  • 3.4 Anglo American Corporation/University of British Columbia Copper Process
  • 3.5 PLATSOLT Process
  • 3.6 GalvanoxT Process
  • 3.7 Kell Process
  • 4. CONCLUSIONS
  • REFERENCES
  • 45 - Processing of High-Silver Gold Ores
  • 1. INTRODUCTION
  • 2. FUNDAMENTALS
  • 2.1 Leaching
  • 2.2 Silver Recovery from Cyanide Solution
  • 3. FLOW SHEET SELECTION
  • 3.1 Heap-Leaching
  • 3.2 Slurry Processes
  • 3.3 Leaching
  • 3.4 Gold Recovery on Carbon
  • 3.5 Gold Recovery by Merrill-Crowe
  • 4. INDICATIVE PLANT DESIGN CRITERIA
  • 5. CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • 46 - Recovery of Gold as By-Product from the Base-Metals Industries
  • 1. INTRODUCTION
  • 2. RECOVERY OF GOLD IN COPPER SMELTERS
  • 2.1 Glencore CCR Refinery
  • 2.2 Outokumpu Pori Refinery
  • 2.3 Phelps Dodge El Paso Refinery
  • 3. RECOVERY OF GOLD AS A BYPRODUCT FROM NICKEL SULFIDE ORES
  • 3.1 Vale Inco
  • 3.2 Falconbridge (Glencore)
  • 3.3 Norilsk
  • 4. RECOVERY OF GOLD IN ZINC SMELTERS
  • 4.1 Roast-Leach Electrowinning
  • 4.2 Sherritt Gordon Zinc Pressure-Leaching (ZPL)
  • 4.3 Smelting of the Zinc Leach Residue
  • 5. RECOVERY OF GOLD FROM LEAD CONCENTRATES
  • 5.1 Smelting Processes
  • 5.2 Hydrometallurgy for Lead Concentrates
  • 6. RECOVERY OF GOLD FROM COBALT CONCENTRATES
  • 7. RECOVERY OF GOLD FROM THE RECYCLING OF ELECTRONIC SCRAP
  • 8. DIRECT LEACHING OF GOLD AND PGMS FROM ORES OR CONCENTRATES
  • 8.1 BHP TML Process
  • 8.2 North American Palladium Process
  • 8.3 PLATSOLT Process
  • 8.4 Panton Process
  • 8.5 Kell Process
  • 9. CONCLUSIONS
  • REFERENCES
  • 47 - Extraction of Gold from Platinum Group Metal Ores
  • 1. PRIMARY EXTRACTION CIRCUITS
  • 2. GOLD EXTRACTION FROM SECONDARY SOURCES
  • 2.1 Processing High-Grade Gold Alloys
  • 2.2 Refining Gold-PGM Alloys
  • 2.3 Gold-Copper Alloys
  • 2.4 Low-Grade Cu-Au-PGMs
  • 2.5 Low-Grade Sweeps
  • 2.5.1 Traditional Methods
  • 2.5.2 Modern Low-Grade Circuits
  • 3. HYDROMETALLURGICAL GOLD PROCESSES IN PRECIOUS METAL REFINERIES
  • 3.1 Dissolution of Concentrates and Alloys
  • 3.2 Selective Gold Extraction and Recovery from Complex PGM Solutions
  • 3.3 Selective Reduction of Gold in PGM Solutions
  • 3.4 Selective Solvent Extraction of Gold from PGM Solutions
  • 3.5 Gold Solvent Extraction with Dibutyl Carbitol
  • 3.6 Gold Solvent Extraction with MIBK
  • 3.7 Gold Solvent Extraction with 2-Ethyl Hexanol
  • 3.8 Ion Exchange
  • 3.9 Hydrometallurgical Treatment of PGM Concentrates
  • 4. CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • Refractory Ores
  • 48 - Refractory Sulfide Ores-Case Studies
  • 1. INTRODUCTION
  • 2. SANSU PROJECT, ASHANTI GOLDFIELDS CORPORATION (GHANA)
  • 3. KANOWNA BELLE PROJECT (WESTERN AUSTRALIA)
  • 4. MACRAES GOLD PROJECT (NEW ZEALAND)
  • REFERENCES
  • 49 - Preg-Robbing Gold Ores
  • 1. INTRODUCTION
  • 2. CARBONACEOUS MATTER AND GOLD ADSORPTION
  • 2.1 Chemical Characteristics
  • 2.2 Adsorption Phenomena
  • 3. TREATMENT OF CARBONACEOUS ORE
  • 3.1 Activated Carbon-in-Leach (CIL) and Resin-in-Leach (RIL)
  • 3.2 Blinding or Blanking
  • 3.3 Roasting
  • 3.4 Chlorination
  • 3.5 Pressure Oxidation
  • 3.6 Nitric Acid Treatment
  • 3.7 Microbial Deactivation
  • 3.8 Thiosulfate Leaching
  • 4. NONCARBONACEOUS PREG-ROBBING
  • 5. EXAMPLES OF PLANT PRACTICE
  • 6. PRACTICAL ORE CHARACTERIZATION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 50 - Double-Refractory Carbonaceous Sulfidic Gold Ores
  • 1. INTRODUCTION
  • 2. PROCESSING ALTERNATIVES
  • 2.1 Roasting
  • 2.2 Pressure Oxidation
  • 2.3 Bacterial Oxidation
  • 2.4 Sulfide Oxidation Followed by Thiosulfate Leaching
  • 3. PROCESS FACILITIES IN NEVADA
  • 3.1 Carlin Mill 6-Newmont
  • 3.2 Twin Creeks Gold Mine-Newmont
  • 3.3 Barrick Goldstrike Mines: Barrick Gold
  • 3.3.1 Mill/Autoclave Facility
  • 3.3.2 Roaster Facility
  • REFERENCES
  • 51 - Treatment of Gold-Telluride Ores
  • 1. INTRODUCTION
  • 1.1 Tellurium-Bearing Ores and Materials
  • 1.2 Toxicity
  • 1.3 Assaying
  • 2. HISTORICAL TREATMENT METHODS
  • 2.1 Cripple Creek
  • 2.2 Kalgoorlie
  • 2.3 Kirkland Lake
  • 2.4 Fiji
  • 3. MODERN DEVELOPMENTS
  • 3.1 Milling
  • 3.2 Flotation
  • 3.3 Cyanide Leaching - Testwork Results
  • 3.4 Cyanide Leaching - Theoretical Considerations
  • 3.5 Other Oxidative Processes
  • REFERENCES
  • 52 - Treatment of Antimonial Gold Ores
  • 1. INTRODUCTION
  • 2. FUNDAMENTALS
  • 3. COMMERCIAL OPERATIONS
  • 3.1 Costerfield
  • 3.2 Hillgrove
  • 3.3 Cons Murch Mine
  • 4. NEW PLANT DESIGN
  • 4.1 Low-Grade Antimony Gold Ores
  • 4.2 Medium-Grade Antimony Gold Ores
  • REFERENCES
  • Other Gold-Bearing Materials
  • 53 - Gold - A Key Enabler of a Circular Economy: Recycling of Waste Electric and Electronic Equipment
  • 1. A CIRCULAR ECONOMY - GOLD'S KEY ROLE
  • 2. PRODUCT-CENTRIC RECYCLING OF GOLD - ENABLING A CIRCULAR ECONOMY
  • 2.1 The Mineralogy Basis of Product-Centric Recycling: A Gold Perspective
  • 2.2 Major Factors Influencing Recycling of Gold From WEEE
  • 2.3 Recycling Policy Enabling a CE - The Importance of Gold
  • 3. OPPORTUNITIES AND LIMITS OF RECYCLING OF GOLD FROM WEEE
  • 3.1 Best Available Techniques
  • 3.2 Metallurgical Processing Detail for Recovery of Base Metals and Associated Gold
  • 3.2.1 Processing Gold-Rich Secondary Materials
  • 3.2.2 Pyrometallurgical Details
  • 3.2.3 Hydrometallurgical Details
  • 3.2.4 Summary
  • 4. DESIGNING A CE - QUANTIFYING THE RESOURCE EFFICIENCY OF FIGURE 53.1
  • 5. CONCLUSION: ENABLING SYSTEM-INTEGRATED METAL PRODUCTION OF THE CE
  • GLOSSARY
  • REFERENCES
  • ADDITIONAL LITERATURE
  • Summary of Gold Plants and Processes, Emerging and Transformational Technologies
  • 54 - Summary of Gold Plants and Processes
  • 1. INTRODUCTION
  • 2. SUMMARY OF GOLD PLANTS AND PROCESSES
  • 3. CONCLUSIONS
  • 55 - Emerging and Transformational Gold Processing Technologies
  • 1. INTRODUCTION
  • 2. MOORE'S LAW AND GOLD PROCESSING TECHNOLOGIES
  • 3. CYANIDE: A SUSTAINABLE FUTURE IN GOLD ORE PROCESSING?
  • 4. FIRE AND WATER: WILL HYDROPROCESSING SUPERSEDE SMELTING?
  • 5. IN SITU AND SOLUTION MINING
  • 6. GOLD DEMAND: FUTURE USES FOR GOLD PRODUCTS
  • 7. GOLD SUPPLY: NONTRADITIONAL SOURCES
  • 8. OUTLOOK FOR TRANSFORMATIVE GOLD PROCESSING
  • REFERENCES
  • Appendix
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

321,30 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok