Predictive Data Mining

A Practical Guide
 
 
Morgan Kaufmann Publishers In
  • erschienen am 8. Dezember 1997
 
  • Buch
  • |
  • Softcover
  • |
  • 228 Seiten
978-1-55860-403-2 (ISBN)
 
The potential business advantages of data mining are well documented in publications for executives and managers. However, developers implementing major data-mining systems need concrete information about the underlying technical principles-and their practical manifestations-in order to either integrate commercially available tools or write data-mining programs from scratch. This book is the first technical guide to provide a complete, generalized roadmap for developing data-mining applications, together with advice on performing these large-scale, open-ended analyses for real-world data warehouses.

Note: If you already own Predictive Data Mining: A Practical Guide, please see ISBN 1-55860-477-4 to order the accompanying software. To order the book/software package, please see ISBN 1-55860-478-2.


+ Focuses on the preparation and organization of data and the development of an overall strategy for data mining.
+ Reviews sophisticated prediction methods that search for patterns in big data.
+ Describes how to accurately estimate future performance of proposed solutions.
+ Illustrates the data-mining process and its potential pitfalls through real-life case studies.
  • Englisch
  • San Francisco
  • |
  • USA
Elsevier Science & Technology
  • Für höhere Schule und Studium
black & white illustrations
  • Höhe: 230 mm
  • |
  • Breite: 152 mm
  • |
  • Dicke: 13 mm
  • 364 gr
978-1-55860-403-2 (9781558604032)
1558604030 (1558604030)
Sholom M. Weiss is a professor of computer science at Rutgers University and the author of dozens of research papers on data mining and knowledge-based systems. He is a fellow of the American Association for Artificial Intelligence, serves on numerous editorial boards of scientific journals, and has consulted widely on the commercial application of advanced data mining techniques. He is the author, with Casimir Kulikowski, of Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems, which is also available from Morgan Kaufmann Publishers. Nitin Indurkhya is on the faculty at the Basser Department of Computer Science, University of Sydney, Australia. He has published extensively on Data Mining and Machine Learning and has considerable experience with industrial data-mining applications in Australia, Japan and the USA.
1 What is Data Mining?
2 Statistical Evaluation for Big Data
3 Preparing the Data
4 Data Reduction
5 Looking for Solutions
6 What's Best for Data Reduction and Mining?
7 Art or Science? Case Studies in Data Mining
"I enjoy reading PREDICTIVE DATA MINING. It presents an excellent perspective on the theory and practice of data mining. It can help educate statisticians to build alliances between statisticians and data miners." --Emanuel Parzen, Distinguished Professor of Statistics, Texas A&M University

Versand in 3-4 Wochen

67,07 €
inkl. 7% MwSt.
in den Warenkorb

Abholung vor Ort? Sehr gerne!
Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok