Einführung in die Kombinatorik

 
 
Springer Spektrum (Verlag)
  • 3. Auflage
  • |
  • erschienen am 14. Juli 2019
 
  • Buch
  • |
  • Softcover
  • |
  • IX, 327 Seiten
978-3-662-58920-5 (ISBN)
 
Dieses Lehrbuch vermittelt die Grundlagen und Konzepte der modernen Kombinatorik in anschaulicher Weise. Die verständliche Darlegung richtet sich an Studierende der Mathematik, der Naturwissenschaften, der Informatik und der Wirtschaftswissenschaften und erlaubt einen einfachen und beispielorientierten Zugang zu den Methoden der Kombinatorik. Beginnend mit den Grundaufgaben der Kombinatorik wird der Leser Schritt für Schritt mit weiterführenden Themen wie erzeugende Funktionen, Rekurrenzgleichungen und der Möbiusinversion sowie Graphenpolynomen und endlichen Automaten vertraut gemacht. Eine Vielzahl von Beispielen und Übungsaufgaben mit Lösungen erleichtern das Verständnis und dienen der Vertiefung und praktischen Anwendung des Lehrstoffes.

Die vorliegende dritte Auflage ist komplett durchgesehen und deutlich erweitert um das Thema Kombinatorische Klassen und weitere, auch für die praktische Anwendung wichtige Graphenpolynome.
3. Auflage
  • Deutsch
  • Heidelberg
  • |
  • Deutschland
Springer Berlin
  • Broschur/Paperback
  • |
  • Klebebindung
  • 92 s/w Abbildungen
  • |
  • 95 schwarz-weiße Abbildungen, Bibliographie
  • Höhe: 233 mm
  • |
  • Breite: 156 mm
  • |
  • Dicke: 25 mm
  • 532 gr
978-3-662-58920-5 (9783662589205)
10.1007/978-3-662-58921-2
weitere Ausgaben werden ermittelt
Prof. Dr. Peter Tittmann ist Dozent an der Hochschule Mittweida.

1 Abzählen von Objekten.- 1.1 Permutationen.- 1.2 Auswahlen.- 1.3 Partitionen von Mengen.- 1.4 Partitionen von natürlichen Zahlen.- 1.5 Verteilungen.- 1.6 Beispiele und Anwendungen.- Aufgaben.- 2 Erzeugende Funktionen.- 2.1 Einleitung und Beispiele.- 2.2 Formale Potenzreihen.- 2.3 Gewöhnliche erzeugende Funktionen.- 2.4 Exponentielle erzeugende Funktionen.- 2.5 Anwendungen erzeugender Funktionen.- Aufgaben.- 3 Rekurrenzgleichungen.- 3.1 Beispielprobleme.- 3.2 Elementare Methoden.- 3.3 Lösung mit erzeugenden Funktionen.- 3.4 Lineare Rekurrenzgleichungen.- 3.5 Nichtlineare Rekurrenzgleichungen.- Aufgaben.- 4 Summen.- 4.1 Elementare Methoden.- 4.2 Differenzen- und Summenoperatoren.- 4.3 Harmonische Zahlen.- 4.4 Weitere Methoden der Summenrechnung.- Aufgaben.- 5 Graphen.- 5.1 Grundbegriffe der Graphentheorie.- 5.2 Spannbäume.- 5.3 Graphen und Matrizen.- 5.4 Das Zählen von Untergraphen - Graphenpolynome.- Aufgaben.- 6 Geordnete Mengen.- 6.1 Grundbegriffe.- 6.2 Grundlegende Verbände.- 6.3 Die Inzidenzalgebra.- 6.4 Die Möbius-Funktion.- 6.5 Das Prinzip der Inklusion-Exklusion.- 6.6 Die Möbius-Inversion im Partitionsverband.- Aufgaben.- 7 Kombinatorische Klassen - Ein allgemeiner Zugang zu erzeugenden Funktionen.- 7.1 Einfache kombinatorische Klassen.- 7.2 Kombinatorische Konstruktionen.- 7.3 Kombinatorische Klassen markierter Objekte.- 8 Permutationen.- 8.1 Die Stirling-Zahlen erster Art.- 8.2 Die symmetrische Gruppe.- 8.3 Der Zyklenzeiger.- 8.4 Geschachtelte Symmetrie.- Aufgaben.- 9 Abzählen von Graphen und Bäumen.- 9.1 Graphen.- 9.2 Die Gruppe Sn(2).- 9.3 Isomorphieklassen von Graphen.- 9.4 Bäume.- 9.5 Planare und binäre Bäume.- Aufgaben.- 10 Wörter und Automaten.- 10.1 Wörter und formale Sprachen.- 10.2 Erzeugende Funktionen.- 10.3 Automaten.- 10.4 Reduktionen von Automaten.- 10.5 Unendliche Automaten.- 10.6 Erzeugende Funktionen in mehreren Variablen und mit Parametern.- Aufgaben.- 11 Ausblicke.- Lösungen der Aufgaben.- Literaturverzeichnis.- Symbolverzeichnis.- Index.

Dieses Lehrbuch vermittelt die Grundlagen und Konzepte der modernen Kombinatorik in anschaulicher Weise. Die verständliche Darlegung richtet sich an Studierende der Mathematik, der Naturwissenschaften, der Informatik und der Wirtschaftswissenschaften und erlaubt einen einfachen und beispielorientierten Zugang zu den Methoden der Kombinatorik. Beginnend mit den Grundaufgaben der Kombinatorik wird der Leser Schritt für Schritt mit weiterführenden Themen wie erzeugende Funktionen, Rekurrenzgleichungen und der Möbiusinversion sowie Graphenpolynomen und endlichen Automaten vertraut gemacht. Eine Vielzahl von Beispielen und Übungsaufgaben mit Lösungen erleichtern das Verständnis und dienen der Vertiefung und praktischen Anwendung des Lehrstoffes.


Die vorliegende dritte Auflage ist komplett durchgesehen und deutlich erweitert um das Thema Kombinatorische Klassen und weitere, auch für die praktische Anwendung wichtige Graphenpolynome.

Stimme zu ersten Auflage

"Die verständliche Darstellungsweise des Autors und die vielen Beispiele ermöglichen es auch Lesern ohne umfangreiche mathematische Kenntnisse dem Inhalt zu folgen."

Aus einer amazon-Kundenrezension

Der Autor

Prof. Dr. Peter Tittmann ist Dozent an der Hochschule Mittweida.

Sofort lieferbar

29,99 €
inkl. 7% MwSt.
in den Warenkorb