All our inner organs and tissues require a constant environment to work effectively. Warm-blooded animals keep a core body temperature around 98 degreesF as the cells function at an optimal capacity at this temperature. The core body temperature of cold-blooded animals is the same as the surrounding environment and animals need to move into warmer or colder environments so that the internal state becomes ideal for physiological processes. One of the fundamental concepts in life sciences and medical and veterinary practice is that our internal states maintain stability through a process called Homeostasis. Originally coined by Walter B Cannon, homeostasis describes a series of internal physiological components that seek to maintain a fixed state established by set points (e.g., 98 degreesF core body temperature). Any deviations in homeostasis leads to severe pathology such as hypothermia or death. But it is becoming increasingly clear that homeostatic set points vary predictably with time or new, temporary set points can be created.
The concept of rheostasis, described as the regulated change in physiology, accounts for how homeostatic set points can change to optimize our health and wellbeing, and survival in all animals. Daily changes in hormones, sleep-wake cycles, female reproductive cycles, and seasonal breeding in animals are excellent examples to show regulated changes in physiology. In this book, the concept of rheostasis is re-examined through the lens of 30 years of discoveries that include newly identified genes, increases in our understanding of the internal activity in cells, scientific advances in how neurons in the brain communicate with each other, complex imaging, and identifying how the brain creates representations of our environment.
This book aims to present a new way of thinking about how our bodies maintain physiological stability and proposes that homeostasis and rheostasis act independently and evolved separately to maintain stability by entirely distinct processes. The new conceptual model described indicates that our physiological systems have a tiered level of organization with significant implications for how we maintain our health and the treatment of common illnesses such as some bacterial or viral infections, as well as complex treatments for psychiatric and neurological disorders.
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Maße
Höhe: 235 mm
Breite: 156 mm
ISBN-13
978-0-19-766557-2 (9780197665572)
Schlagworte
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Thema Klassifikation
Newbooks Subjects & Qualifier
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BIC 2 Klassifikation
BISAC Klassifikation
Tyler John Stevenson is Head of Physiology, Ageing and Welfare in the School of Biodiversity, One Health, and Veterinary Medicine at the University of Glasgow. He is Group Leader in the Laboratory of Seasonal Biology and recipient of the Leverhulme Trust Research Leader Award in 2019. He has also received awards from the Society for Behavioral Neuroendocrinology and British Society for Neuroendocrinology for his pioneering scientific discoveries in seasonal physiology of vertebrates. Tyler was recently elected Fellows of the Royal Society of Biology and Higher Education Academy.