Periodic Homogenization of Elliptic Systems

 
 
Birkhäuser (Verlag)
  • erschienen am 24. Januar 2019
 
  • Buch
  • |
  • Softcover
  • |
  • 304 Seiten
978-3-030-08199-7 (ISBN)
 
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
Paperback
Softcover reprint of the original 1st ed. 2018
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • Für Beruf und Forschung
IX, 291 p.
  • Höhe: 235 mm
  • |
  • Breite: 155 mm
  • |
  • Dicke: 16 mm
  • 464 gr
978-3-030-08199-7 (9783030081997)
10.1007/978-3-319-91214-1
weitere Ausgaben werden ermittelt
Elliptic Systems of Second Order with Periodic Coeffcients.- Convergence Rates, Part I.- Interior Estimates.- Regularity for Dirichlet Problem.- Regularity for Neumann Problem.- Convergence Rates, Part II.- L2 Estimates in Lipschitz Domains.

Versand in 7-9 Tagen

58,84 €
inkl. 7% MwSt.
Sonderpreis bis 30.06.2020
Aktion Yellow Sale | statt 96,29 €
in den Warenkorb