Mechanik

Theoretische Physik I
 
 
Wiley-VCH (Verlag)
  • 2. Auflage
  • |
  • erschienen am 7. April 2021
 
  • Buch
  • |
  • Softcover
  • |
  • XVIII, 482 Seiten
978-3-527-41390-4 (ISBN)
 
Die Neuauflage deckt die klassischen Gebiete der Mechanik ab, angefangen bei der Kinematik eines Massenpunktes über die Newtonschen Bewegungsgleichungen bis zu den abstrakten Formulierungen der Mechanik (Lagrange 1. und 2. Art, Hamilton'sche Mechanik) und der Relativitätstheorie.
2. Auflage
  • Deutsch
  • Weinheim
  • |
  • Deutschland
  • Für Beruf und Forschung
  • 200 s/w Abbildungen
  • |
  • 200 schwarz-weiße Abbildungen
  • Höhe: 245 mm
  • |
  • Breite: 175 mm
  • |
  • Dicke: 27 mm
  • 952 gr
978-3-527-41390-4 (9783527413904)
weitere Ausgaben werden ermittelt
Peter Reineker ist Professor für Physik an der Universität Ulm. Michael Schulz ist außerplanmäßiger Professor an der Universität Ulm und Geschäftsführer der Bachmann Monitoring GmbH. Beatrix M. Schulz ist Wissenschaftlerin bei der Bachmann Monitoring GmbH. Reinhold Walser ist Professor für Physik an der Technischen Universität Darmstadt.
1 EINLEITUNG 1.1 Experimentelle und Theoretische Physik 1.2 Ziel der Theoretischen Physik 1.3 Der Aufbau der Lehrbuchreihe Theoretische Physik 1.4 Stellung der klassischen Mechanik innerhalb der Theoretischen Physik 1.5 Gültigkeitsgrenzen der klassischen Mechanik 1.6 Aufbau des Bands Theoretische Mechanik 1.7 Modellebenen der Theoretischen Mechanik 1.8 Lösung von Gleichungen 2 KINEMATIK EINES MASSENPUNKTS 2.1 Grundbegriffe der Kinematik 2.2 Verschiedene Koordinatensysteme 2.3 Rekonstruktion von Bewegungsgleichungen 3 NEWTON'SCHE MECHANIK DES EINZELNEN MASSENPUNKTS 3.1 Die Newton'schen Axiome 3.2 Bewegung eines freien Massenpunkts 3.4 Der Satz von der Erhaltung der mechanischen Energie 3.5 Zentralkräfte. Drehmoment und Drehimpuls 3.6 Die eingeschränkte Bewegung eines Massenpunkts. Dissipation 3.7 Gleichgewicht des Massenpunkts. Das Prinzip der virtuellen Arbeit 3.8 Das d'Alembert'sche Prinzip. Die formale Rückführung der Dynamik auf die Statik 3.9 Bewegte Bezugssysteme (Relativbewegung). Trägheitskräfte 4 ANWENDUNG DER NEWTON'SCHEN GRUNDGLEICHUNG AUF SPEZIELLE PROBLEME DER DYNAMIK EINES MASSENPUNKTS 4.1 Eindimensionale Bewegungen. Freier Fall aus großer Entfernung 4.2 Schwingungen 4.3 Bewegung eines Massenpunkts im Gravitationsfeld 5 NEWTON'SCHE MECHANIK VON PUNKTSYSTEMEN 5.1 Punktsysteme und darauf wirkende Kräfte 5.2 Impulssatz und Schwerpunktsatz 5.3 Der Drehimpuls eines Systems von Massenpunkten 5.4 Energiesatz 6 LAGRANGE-FORMULIERUNG DER MECHANIK 6.1 Das Prinzip der virtuellen Arbeit und das d'Alembert'sche Prinzip 6.2 Lagrange-Gleichungen 1. Art für Punktsysteme 6.4 Grundaufgabe der Variationsrechnung 6.5 Lagrange'sche Bewegungsgleichung 2. Art 7 DIE HAMILTON'SCHEN BEWEGUNGSGLEICHUNGEN 7.1 Systeme mit einer Lagrange-Funktion (einem kinetischen Potential) 7.2 Hamilton-Funktion. Kanonische Gleichungen 7.3 Physikalische Bedeutung der Hamilton-Funktion 7.4 Beispiele 7.5 Poisson-Klammern 7.6 Erhaltungssätze. Zyklische Variable 7.8 Liouville-Gleichung. Bewegung im Phasenraum 7.9 Hamilton-Jacobi'sche partielle Differentialgleichung 7.10 Periodische Bewegung. Wirkungs- und Winkelvariable 7.11 Reguläre und Irreguläre Bewegung konservativer Systeme 8 MECHANIK DES STARREN KÖRPERS 8.1 Definition und Freiheitsgrade des starren Körpers 8.2 Koordinatensysteme und Bewegung eines starren Körpers 8.3 Kinetische Energie des starren Körpers. Trägheitstensor 8.4 Drehimpuls und Drehmoment. Bewegungsgleichungen eines starren Körpers 8.5 Energie- und Drehimpulssatz des kräftefreien Kreisels 8.6 Die Bewegungsgleichungen eines in einem Punkt festgehaltenen Körpers 8.7 Diskussion von Sonderfällen 9 RELATIVITÄTSTHEORIE

Sofort lieferbar

49,90 €
inkl. 7% MwSt.
in den Warenkorb