State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More

 
 
Academic Press Inc
  • erschienen am 5. September 2019
 
  • Buch
  • |
  • Hardcover
  • |
  • 360 Seiten
978-0-12-816174-6 (ISBN)
 
State of the Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, Volume 79 in the Advances in Quantum Chemistry series, presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. Chapters in this new release include Computing accurate molecular properties in real space using multiresolution analysis, Self-consistent electron-nucleus cusp correction for molecular orbitals, Correlated methods for computational spectroscopy, Potential energy curves for the NaH molecule and its cation with the cock space coupled cluster method, and much more.



- Presents surveys of current topics in this rapidly-developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology
- Features detailed reviews written by leading international researchers
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science Publishing Co Inc
  • Für Beruf und Forschung
  • |
  • Quantum chemists, physical chemists, physicists
  • Höhe: 229 mm
  • |
  • Breite: 152 mm
  • 700 gr
978-0-12-816174-6 (9780128161746)
Born 15.03.1961 in Aberystwyth, GB. French mother and Scottish father who were French literature specialists at the University. One sister.
Schooled at Ardwyn Grammar which became Penglais Comprehensive in Aberystwyth.
Admitted to Trinity College, Cambridge in 1978 to read Natural Sciences. Graduated in 1983 (MA).
I had become interested in theoretical quantum chemistry. Leisure activities: Rugby, Theatre, Debate, Competitive Wine-tasting (Master of Wine).
Obtained DPhil (in English) and DSc (Doctorat d'Etat-in French) doctorates by research after moving to the theoretical chemistry group in Nancy, France (1983). Began teaching in 1986. Moved to a permanent lecturer position in Caen in 1992.
The stay in Nancy was devoted to methodology, including Green's functions for electron transfer to metals from weakly interacting molecules. Caen explicitly involved catalysis. I became the first theoretician in a group, half of which worked closely with the petroleum industry and the half I was more directly associated with in Infra-red measurements to determine reaction intermediate structure. This was a very fruitful collaboration and by the time I was appointed to the chair of Theoretical Chemistry in Clermont (1998), two of my former students were able to take over the research and teaching.
Presently, I am still in Clermont. In 2005, I moved to the Physics institute (Institut Pascal) to work on semi-conductor surfaces, in a set-up similar to that in Caen, with a majority of X-ray structure characterisation and some density functional theory and dynamics. The whole of 2003 and part of 2004 had been devoted to a visiting professor position in Tallahassee, Florida amid a very stimulating theoretical physics group.
Since 2008, I have developed an expertise in Quantum Monte Carlo (QMC) simulations.
The CNRS has supported this with a total of two full-time and one part time years of leave for research which lowed me to visit several QMC research teams, notably in Paris and Toulouse. This status includes 2017.
I married a research biochemist from Clermont and we have two daughters. Lorenzo Ugo Ancarani is at Universite de Lorraine, Metz, France
1. Computing accurate molecular properties in real space using multiresolution analysis

Florian A. Bischoff

2. Hypergeometric orthogonal polynomials as expansion basis sets for atomic and molecular orbitals: The Jacobi ladder

Cecilia Coletti, Vincenzo Aquilanti and Federico Palazzetti

3. Two-dimensional Sturmian basis set for bound state calculations

Juan Martin Randazzo and Lorenzo Ugo Ancarani

4. Normalizing cluster wavefunctions in the interstitial region within the muffin-tin approximation

Daniel Gebremedhin, Charles Weatherford and Brian Wilson

5. Self-consistent electron-nucleus cusp correction for molecular orbitals

Pierre-Francois Loos, Anthony Scemama and Michel Caffarel

6. Configuration interaction study of the 3P ground and low-lying states of the boron anion: The boron electron affinity

María Belén Ruiz

7. Advances in approximate natural orbital functional theory

Ion Mitxelena, Mario Piris and Jesus M. Ugalde

8. Collision processes in atoms and molecules using effective potentials

Alejandra M.P. Mendez, Dario M. Mitnik and Jorge E. Miraglia

9. Unified construction of Fermi, Pauli, and exchange-correlation potentials

Viktor N. Staroverov and Egor Ospadov

10. Potential energy curves of the NaH molecule and its cation with the Fock space coupled cluster method

Artur Lison, Monika Musial and Stanislaw A. Kucharski

11. An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets

Johanna P. Carbone, Lan Cheng, Rolf H. Myhre, Devin Matthews, Henrik Koch and Sonia Coriani

12. Determination of electronic couplings in the singlet fission process using a nonorthogonal configuration interaction approach

Luis Enrique Aguilar Suarez, R. K. Kathir, Enrico Siagri, Remco W. A. Havenith and Shirin Faraji

13. Diagnosis of two evaluation paths to density-based descriptors of molecular electronic transitions

Gabriel Breuil, Kaltrina Shehu, Elise Lognon, Sylvain Pitie, Benjamin Lasorne

and Thibaud Etienne

14. Physisorption energy of H and H2 on clean Pt(111) as a useful surface energy reference in Quantum Monte Carlo calculation

Rajesh O. Sharma and Philip E. Hoggan

15. Stability after confinement of the H atom

Milagros F. Morcillo, Enrique F. Borja, Jose M. Alcaraz-Pelegrina and

Antonio Sarsa

Versand in 15-20 Tagen

205,53 €
inkl. 7% MwSt.
in den Warenkorb